
Reference Manual.
Version 1.0

HMI Editor

HMI Editor
Reference Manual.

Version 1.0

page: / www.ritecontrol.com2 153

http://www.ritecontrol.com

HMI Editor

What is HMI Editor.
The HMI Editor app is the developer component of the HMI Pad system for creating Human Machine Interfaces for real time
monitoring of industrial PLC based systems and processes. The other two components are the HMI app and the HMI Pad Servi-
ce.

Main features.
✓ Very fast native app, launches and connects immediately regardless of project size, not a web based app.

✓ All data types supported including Boolean, Integer and Floating Point values.

✓ Advanced Expressions Engine supporting a number of data types including Strings, Arrays and Dictionaries.

✓ Projects can be fully edited on-screen as you run and monitor your process. Or can be exported and edited as a text file.

✓ Configurable User Accounts allow for project storage in the cloud and easy deployment to end users.

✓ The app connects to PLCs directly using native communication protocols. Connections are performed without any intermedia-
te servers or boxes.

✓ TCP/IP based security.

The concept behind the HMI Pad apps.
The HMI Editor and HMI apps are built on top of two main modules: the Communications Module and the Expressions Engine.
These modules interact with each other and to the user interface to provide most of the underlying capabilities and many advan-
ced features.
The HMI Editor lets Integrators build fully customizable HMI interfaces by adding visual items or other objects to pages. Objects
have properties that can be connected between them or with PLC tags through expressions. Virtually all properties can be lin-
ked through expressions. This architecture provides an extremely powerful environment for Integrators to create advanced HMI
interfaces.
HMIs can be fully created and deployed from the app by dragging and connecting items together. Integrators can also chose to
edit project files on a text editor. The app also fully supports copy/paste/duplicate of items, tags, connections etc, and has unli-
mited undo/redo capabilities.
The app comes with a free service on the cloud, the HMI Pad Service, for convenient storage of projects and associated assets
and further deployment to End Users.
The complementary HMI app let automation integrators to safely and securely deploy projects to end users devices with no phy-
sical access to them. Projects on the HMI app are installed as encrypted, non-editable instances of your projects, thus helping
you to safely keep your work and know how.

page: / www.ritecontrol.com3 153

http://www.ritecontrol.com

HMI Editor

TABLE OF CONTENTS

1 The HMI Pad System Components 7__

2 The HMI Editor app main user Interface 8__
2.1 The Application Panel 8___
2.2 The Project Viewer 9__

3 Creating and opening Projects 10___

4 Editing Projects in the Project Viewer 11___
4.1 Editing Projects in a Text Editor 14__

5 Objects, Properties and the Project Object Model 15_____________________________
5.1 The Model Browser and Main Object Types 16_______________________________________
5.2 Object Properties 20___

5.2.1 Property Kinds 21__
5.2.1 Property Data Types 22__

6 Expressions 23___
6.1 Data Types in Expressions 25__
6.2 Supported Operators and Operator precedence 28___________________________________
6.3 Functions, Methods and more about Operators 29___________________________________

6.3.1 Numeric Operators and Methods 29__
6.3.2 String Operators and Methods 31___
6.3.3 Array Operators and Methods 33___
6.3.4 Dictionary Operators and Methods 35__
6.3.5 Absolute Time Operators and Methods 36__
6.3.6 Range Operators and Methods 38___
6.3.7 Rect, Point and Size Methods 38__
6.3.8 MATH Methods 39___
6.3.9 Built-in Functions 41___
6.3.10 System Methods 42__

6.4 Format specifiers for ‘format’ and ‘to_s’ 43__
6.5 The ternary conditional operator 44___
6.6 The ‘if-then-else’ clause 45__
6.7 The Expression List Operator 46___
6.8 Putting it all together. Advanced Expressions Examples 47___________________________

7 Object Properties Reference 49___
7.1 System Objects 49___

7.1.1 $Project 50___
7.1.2 $System 52___
7.1.3 $Location 55__

page: / www.ritecontrol.com4 153

http://www.ritecontrol.com

HMI Editor

7.1.4 $Motion 57___
7.1.5 $Player 59__
7.1.6 $Scanner 60__
7.1.7 $UsersManager 61__

7.2 Page Object 63___
7.3 Interface Objects 65___

7.3.2 Controls 67___
7.3.2.1 Input Fields 68___

7.3.2.1.1 Text Field 70 ___

7.3.2.1.2 Numeric Field 71 ___

7.3.2.2 Button 72__
7.3.2.3 Switch 74___

7.3.2.3.1 Styled Switch 74 __

7.3.2.3.2 Custom Switch 75 ___

7.3.2.4 Segmented Control 76__
7.3.2.5 Slider 78__
7.3.2.6 Knob Control 79__
7.3.2.7 Array Picker 81___
7.3.2.8 Dictionary Picker 83__
7.3.2.9 Tap Gesture Recognizer 84___

7.3.3 Indicators 85___
7.3.3.1 Label 85__
7.3.3.2 Bar Level 86__
7.3.3.3 Range Indicator 88___
7.3.3.4 Data Presenter 90__

7.3.3.4.1 Trend 91 ___

7.3.3.5 Chart 94__
7.3.3.6 Scale 96__
7.3.3.7 Gauge 98___
7.3.3.8 Lamp 100___
7.3.3.9 Horizontal Pipe 101__
7.3.3.10 Vertical Pipe 102__
7.3.3.11 Group 103___

7.3.4 Image Objects 104__
7.3.4.1 Image 104__
7.3.4.2 Frame Shape 106___

7.3.5 Web Objects 109___
7.3.5.1 Web Browser 109__

7.4 Background Objects 110___
7.4.1 Expression Object 110__
7.4.2 Recipe Sheet Object 111__
7.4.3 Data Snap Object 113___
7.4.4 On Timer 114___

page: / www.ritecontrol.com5 153

http://www.ritecontrol.com

HMI Editor

7.5 Alarm Objects 115___
7.5.1 Alarm 116__

7.6 Users 118__
7.6.1 User 118__

7.7 Historical data and Data Logger objects 119___
7.7.1 Data Logger 119__

7.8 Connector Objects 121__
7.8.1 Supported PLC Connector Types 122___
7.8.2 PLC Connector Parameters 123___
7.8.3 Network Settings for local access. 127__

7.8.3.1 PLC Settings for local access. 128___
7.8.4 Network Settings for remote access. 129___
7.8.5 Network Security. 131__
7.8.6 The Default Validation Tag . 132__
7.8.7 Setting a Custom Validation Tag 133__
7.8.8 International Languages Support and String Encodings 134_______________________________

7.8.8.1 String Encoding for International Languages. 135_______________________________
7.8.8.2 Use of International Characters in PLC Strings 136_____________________________

7.9 PLC Tags 137__
7.9.1 Specification of Variable Types (‘Type’ Parameter) 139___________________________________

7.9.1.1 Representation of Character Strings in PLCs 141________________________________
7.9.2 Specification of Variable Addresses (‘Address’ Parameter) 144____________________________
7.9.3 PLC Memory Arrays and Access Patterns 148___
7.9.4 Writing to PLC Variables ('write_expression' Parameter) 151_____________________________

Document Revision History 152___

page: / www.ritecontrol.com6 153

http://www.ritecontrol.com

HMI Editor

1 The HMI Pad System Components
The HMI Pad System is made up of 3 components:

HMI Editor.
This the app Integrators use to create and deploy HMI projects.

HMI Pad Service.
The HMI Pad app is designed to work with a service in the cloud named the HMI Pad Service.
The app seamlessly integrates this service to provide storage options in the cloud and convenient distribution and deployment
of your HMI projects to your End Users or customers. The HMI Pad Service uses Apple's CloudKit infrastructure as the physical
media to store data in the cloud.
Refer to the "HMI Pad Deployment Guide" for more information on what options you have available to work with the HMI Pad
Service as you develop HMI projects.

HMI Pad View.
This is the app where end users run HMI projects developed by integrators. Projects on the HMI app are installed through the
HMI Pad Service and are stored as encrypted instances that can not be edited or moved to other devices.

page: / www.ritecontrol.com7 153

http://www.ritecontrol.com

HMI Editor

2 The HMI Editor app main user Interface
The HMI Editor app interface consists of two main draggable panels, the Application Panel and the Project Viewer.
The Application Panel is shown on the left and there you will find options and settings related with the app.
The Project Viewer is on the right and lets you edit, review and run your project. The Project Viewer can be made full screen by
closing the Application Panel.

2.1 The Application Panel
The Application Panel lets you create and manage the following aspects of the app

• User Accounts and Settings.
• Projects and Assets stored locally.
• Projects and Assets stored on the HMI Pad Service
• Remote Deployment.

Project ViewerApplication Panel

page: / www.ritecontrol.com8 153

http://www.ritecontrol.com

HMI Editor

2.2 The Project Viewer
The Project Viewer is where you create, configure, edit and run projects. From the Project Viewer you get access to Pages,
Connections, Alarms and the internal aspects of your project. You can also set some editing properties and edit objects on
screen using common gestures.
Several sub-panels provide means to navigate through your project to obtain detailed information. You may find the following
panels that will appear at appropriate times or upon particular actions as you edit your project:

• Page Viewer, shows the current page. The Page Navigator appears from the left and displays the list of pages.
• Inspector Panel, appears from the right and contains the Connections Panel, the Tag Viewer and the Alarms Viewer.
• Model Browser, appears as a floating window you can drag around the screen.
• Object Configurator, appears as a floating window when you tap on 'configure' for an object.
• Expressions Keyboard, appears on the bottom of the screen, when editing Object Properties.
• PLCs and TAGs Configuration Panels, appear as floating windows, accessible from the Model Browser
• Model Seeker, appears as a floating window, accessible from the Object Configurators or the Expressions Keyboard

page: / www.ritecontrol.com9 153

http://www.ritecontrol.com

HMI Editor

3 Creating and opening Projects
To create a new project go to "Local Storage -> Projects" on the "Application Panel" and tap on "+", then chose "New Empty
Project". A new project with a default name will appear on the list. Alternatively, you can tap on "New From Template" and the
app will show you a list of already made simple projects you can use to start from.
You can open the project you just created by "sliding" to the right the row in the list containing its name.

It is recommended to rename your projects with suitable names that clearly identifies them to you. To do so set the list to edit
mode by tapping on "Edit", then select the project you want to rename, and choose the appropriate option from the "Actions"
menu on the bottom of the panel.

page: / www.ritecontrol.com10 153

http://www.ritecontrol.com

HMI Editor

4 Editing Projects in the Project Viewer
With the HMI Editor app you can fully edit your HMI projects on the "Project Viewer". When the project viewer is fully visible tap
on the"Edit" button on the top-right of the panel to start editing your project.
It is not a purpose of this manual to fully describe all and every editing option available, but just to provide a guide on what is at
your disposal to complete your editing and where to look at for a specific editing need. For the most part the app interface fol-
lows commonly recognized patterns and provide built-in help that should be enough for the common cases.

The Project Viewer features a toolbar on the top with the following options from left to right:

Pages toolbar icon.
The pages tab bar icon toggles the Page Viewer. From the Page Viewer you can navigate to a particular page in order to open
it. The Page Viewer can also be shown/dismissed with a drag gesture over it or from the left edge of the Project Viewer.

User toolbar icon.
The User toolbar icon presents a project user login screen. For more information on project users look at the $UsersManager
and Users sections in this manual.

page: / www.ritecontrol.com11 153

http://www.ritecontrol.com

HMI Editor

Tools toolbar icon (edit mode only).
Several tools are available for helping on positioning items on pages and editing frames. You will find options to enable or dis-
able auto align rulers, to lock frame editing and to enable multiple selection. You can also enable/disable visual reporting of error
conditions while in edit mode or make hidden items visible while in edit mode.
A number of editing tools are available:

• Allow Multiple Selection. When enabled, multiple item selection will be active, allowing for multiple selection of items for
example for grouping. Default is Off.

• Enable Auto Align Rulers. Determines whether auto-alignment rulers and alignment magnets are enabled. Switch it to off
to allow free layout of items. Default is On.

• Allow Frame Editing. By setting this to off any layout changes of items will be globally disabled. You still will be able to set
item properties. You can disable frame editing on particular items by locking them individually. Default is On.

• Enable Fine Frame Positioning. Determines whether a joy-stick tool will appear for selected items allowing for fine position-
ing and resizing of items. When arranging items using this tool, auto-alignment rulers will still display on screen for a second
but no alignment magnets will be in effect. Default is Off.

• Error Frames When Editing. Determines whether error frames are displayed around objects with undefined values also on
edit mode. Disabling this eliminates page clutter while editing in case you do not have a life PLC connection or your object
properties contain broken links. Default is On.

• Display Hidden Items. Items with their hidden property set to Off are still partially visible on edit mode. However you can
override this behavior by setting this to Off. Default is On

• Interface Idiom. Represents the Interface Idiom you are working on. Chose iPad for building screens for the iPad native
resolution or iPhone for working on interfaces designed for iPhone or iPod touch.

page: / www.ritecontrol.com12 153

http://www.ritecontrol.com

HMI Editor

Undo/Redo toolbar icons (edit mode only).
The app has unlimited undo-redo capabilities that are supported on virtually all changes performed on projects.

New Item toolbar icon (edit mode only).
From this toolbar icon you create new pages or new visual items that you can place on pages or use on your HMI projects.
Items are arranged in categories such as Controls, Indicators, Images and so on. New items are created with default properties
and placed on the center of the page, you can then move them to the desired position and configure their properties. The appli-
cation also features intelligent copy/paste/duplicate of Objects, Pages, Connectors, Tags , including among different projects.

Model Browser toolbar icon (edit mode only).
The model browser icon toggles the Model Browser.

Inspector toolbar icon
The Inspector toolbar icon toggles the Inspector Panel The Inspector Panel can also be shown/dismissed with a drag gesture
over it or from the right edge of the screen. In view mode the toolbar button is replaced by a clickable area that shows the num-
ber of active/number PLC connectors, and the number of active/total alarms

Edit/Done toolbar icon
The Edit/Done toolbar icon toggles the project from Edit to View mode. As a visual effect the entire toolbar becomes blue while
in edit mode.

page: / www.ritecontrol.com13 153

http://www.ritecontrol.com

HMI Editor

4.1 Editing Projects in a Text Editor
Project Files in HMI Editor are plain text files that can be manually edited on a text editor. Project Files can be exported and im-
ported to HMI Editor through the Mail application. They have a .hmipad extension and HMI Editor recognizes any Mail attach-
ment with this extension as a HMI Editor Project File.
If you open an HMI Project file (extension .hmipad) on a text editor you will be able to identify all the Objects and Properties of
your project as they were configured in the application. Indeed, a Project File is a text representation of everything in a project
and a direct description of what you see on the Model Browser. This of course includes all Visual Items on Pages, Background
Items, Alarms, Connectors and PLC Tags.
For example, a knob control on a page may look like this in the .hmipad file

knob_1 = SWKnobItem.new;
knob_1.framePortrait = SM.rect(29, 27, 175, 189);
knob_1.frameLandscape = SM.rect(99, 243, 171, 175);
knob_1.backgroundColor = "ClearColor";
knob_1.hidden = 0;
knob_1.continuousValue = 738.846130371094;
knob_1.enabled = 1;
knob_1.verificationText = "";
knob_1.style = 0;
knob_1.thumbStyle = 0;
knob_1.value = source.max_setpoint;
knob_1.minValue = 0;
knob_1.maxValue = 1000;
knob_1.majorTickInterval = 100;
knob_1.minorTicksPerInterval = 4;
knob_1.format = "%g";
knob_1.label = "";
knob_1.tintColor = "gray";
knob_1.thumbColor = "black";
knob_1.borderColor = "red";

a PLC Tag may look like this in the .hmipad file
source_tags19 = SWSourceNode.new;
source_tags19.name = "max_setpoint";
source_tags19.tag = SWObject.new(source_tags19_tag);
source_tags19.write_expression = max_setpoint.value,knob_1.value;
source_tags19_tag = SWPlcTag.new;
source_tags19_tag.address = "DM10";
source_tags19_tag.type = "REAL";
source_tags19_tag.scale_rmin = 0;
source_tags19_tag.scale_rmax = 0;
source_tags19_tag.scale_emin = 0;
source_tags19_tag.scale_emax = 0;

The ability to manually editing your projects using a Text Editor is an advanced feature that you can use to create and store
project templates, quickly add/replace tags in bulk, find objects and properties for debugging purposes, configure pages or
groups of objects with repetitive patterns, and more.

IMPORTANT NOTE: This is a very advanced feature that brings a lot of power, but it also carries the risk of accidentally break-
ing Project functionality or introducing syntax errors on Project Files that would prevent them from being opened by HMI Editor.
HMI Editor will attempt to report syntax or other errors on imported files in an accurate way but still you may fail at attempting to
fix a particular issue after incorrect manual editing of a file. Therefore, it is strongly recommended to always keep a working
copy of your projects in safe place, so you can recover from them in case something goes really wrong.

page: / www.ritecontrol.com14 153

http://www.ritecontrol.com

HMI Editor

5 Objects, Properties and the Project Object Model
As you build your HMI project you create Pages, Visual Items, PLC connections, PLC Tags, Alarms and so on. Everything you
place on pages and the remaining objects you use to build a project are stored in the Object Model. The Object Model also con-
tains object configurations and all the expressions you used to link objects.
The HMIDraw app is entirely based on Objects, everything is achieved through connecting objects, and every aspects of your
HMI project development is based on managing objects of different kinds.
In HMI Editor there is not a separate concept for generating displays and constructing control logic. There are not either sepa-
rate procedures for each kind of task. Instead, you concentrate all your development on one single easy concept. It is very likely
that you already understand the concept because it is not new to you. You already know how to link cells on an Excel spread-
sheet using formulas to produce results that depend on other cell values, so this is it.
Objects in the HMI Editor app have Properties. Going back to the spreadsheet analogy, object properties are the equivalent to
spreadsheet cells.
To create an HMI project with HMI Editor you simply create objects and link their properties together using expressions, just as
you would do to link cells on a spreadsheet program. This concept extends to the whole app and includes the way objects are
linked to PLC tags. Effectively, tags are just properties of a special kind of object called Connector.
The Object Model is internally architected as a tree-like graph of objects connected through expressions. When something
changes at some point of the model, for example due to an user action or a PLC tag change, a change event is propagated only
to the affected object properties. The application is even-driven to its core, which means that this also applies to display updat-
ing, alarming and control logic, and it makes the app very efficient.
The Object Model is fully visible and accessible through the Model Browser.

page: / www.ritecontrol.com15 153

http://www.ritecontrol.com

HMI Editor

5.1 The Model Browser and Main Object Types
From the Model Browser you access the Object Model of your project. This is equivalent to say that all the objects of your
projects are accessible from the Model Browser.
Furthermore, the Model Browser presents a hierarchical view of your project. In the section named 'Objects Reference' a de-
scription of each object type and its properties is provided in more detail.
The available main object types are listed next:

System Objects.
Represent objects that provide real time iPad sensor information or access to project related properties.

Pages.
The pages that your project contains. In pages you place visual items that can be of a variety of types.

 

page: / www.ritecontrol.com16 153

http://www.ritecontrol.com

HMI Editor

Background.
They are objects that do not have a visual component but you can use on your project.

Alarms.
You set alarm or any arbitrary event conditions that will be displayed on the Inspector Panel when triggered.

page: / www.ritecontrol.com17 153

http://www.ritecontrol.com

HMI Editor

Users.
You can create users on a project basis.

Data Loggers.
Data Loggers allow you to log historical values on database files.

page: / www.ritecontrol.com18 153

http://www.ritecontrol.com

HMI Editor

REST Connectors.
REST Connectors represent connections to web services that may adopt the REST architecture.

PLC Connectors.
PLC Connectors represent connections to PLCs. A connector includes PLC communication settings and PLC tags.

page: / www.ritecontrol.com19 153

http://www.ritecontrol.com

HMI Editor

5.2 Object Properties
Objects in the HMI Editor app have Properties.
Particular properties may represent object states or visual conditions.
Properties are identified in expressions by object name followed by a dot and the property name.

objectName.property

You connect object properties together to add dynamic functionality to your HMI projects. Properties are connected through ex-
pressions.

Example:

Let's suppose we have on a page a switch control and a lamp indicator which are named as such. We want to turn the lamp on/
off with the switch control. To do so we need to enter the switch value on the value property of the lamp.

By entering the switch.value into the value property of the lamp we achieve the desired effect because when the switch changes
a change event will propagate a change to the value property of the lamp

Notice that we entered this in the value property of the lamp, not the switch. This may seem odd before you are used to it or
if you come from traditional HMI systems, but you just need to think on terms of a spreadsheet to see why this works. On a
spreadsheet let's assume you want cell 'A1' to follow the value of cell 'A0'. You would enter '=A0' in cell 'A1'. This is exactly
how the HMI Editor app works, we enter 'switch.value' in 'lamp.value' because we want the lamp to follow the switch.

Object Properties are accessible through the Object Configurator which is available from the "Configure" menu item upon se-
lecting an object on screen or by tapping the "gear" icon for an object on the Model Browser.

page: / www.ritecontrol.com20 153

http://www.ritecontrol.com

HMI Editor

5.2.1 Property Kinds
Object Properties can be read/write but some of them are read only,(particularly on system items) or constants. You identify the
kind of properties by how they are presented or what is allowed for them on the Object Configurator.

Read Only.
Read only properties are mostly used on system objects. They usually provide real time information that can not be set by users
or in general any data value that can not be edited.
An example of a Read Only property is '$System pulse1s'

Read / Write.
Most properties on regular objects are Read/Write. On the Object Configurator they provide a field where you can enter an ex-
pression. In particular, Read/Write properties are identified because they present an entry field with light yellow background.
An example of a Read/Write property is '$Project currentPageIdentifier'

Constants.
Constant properties are similar to Read/Write properties except that any expression or value entered on them can not be
changed at runtime. Constant properties are identified by the presence of an entry field with white background.
An example of a Read/Write property is '$Project title'

page: / www.ritecontrol.com21 153

http://www.ritecontrol.com

HMI Editor

5.2.1 Property Data Types
Object Properties can be of a variety of data types, such as Integer, Double, String and so on.
It is important not to confuse Property Data Types with Expression Result Types as they may not always be related. Particularly,
Property Data Type represents the type that semantically best describes the Property, while Expression Result Types do carry a
semantically agnostic meaning.
For example, a string representing a color name can be assigned to a Property of type Color, but it will still remain a String and
will be simply treated as such by the Expressions Engine.
The concept of Property Data Types abstracts expression result types from their intended actions on properties, thus adding a
flexibility layer on the use of data types in expressions. For example a Color can be physically represented by a String or by a
Number in expressions, and yet be assigned to the same property of type Color.
Property Data Types are shown just below Property Names on the Object Configurator. Some of the most used are Integer,
Bool, Color, Double, Range, Url, FontName, FormatString, Orientation, TextAlignment, and more.
Property Data Types are enumerated and explained in more detail for particular objects on the Object Reference section when
relevant.

page: / www.ritecontrol.com22 153

http://www.ritecontrol.com

HMI Editor

6 Expressions
Expressions can be entered on read/write properties and provide an advanced way to customize various aspects of the interfa-
ce and behavior of HMI Pad projects.
You can combine Object Properties with operators and methods to produce custom results and assign them to other Properties.
Object Properties are referred in expressions by using a dot notation as described in the Object Properties section

Event Driven Architecture.
Expressions in HMI Pad System are stored in a compiled form and are executed by an event-driven engine. The execution en-
gine keeps expression reference information in a way that value changes trigger expression evaluation. The engine is not end-
lessly executing 'for' loops but only change events.
References to dependent expressions create a tree like network where all expressions may have links to other expressions.
When a PLC tag changes, or an user interacts on a control, a change event is originated. This event, that occurs at some point
in the expressions network, is propagated through the relevant links to reach only the expressions that need to know about it,
generally only a few.
The result is that expressions execution time is basically independent of project sizes or the total number of expressions defined
in projects. The Event Driven Architecture is specially suitable for running HMI projects in the constrained environment of a mo-
bile device and still be able to support very big projects with no noticeable performance penalties.
Another responsibility of the Expressions Engine is to determine the minimum set of data that is required at a given time to keep
a consistent interface. This is translated to the minimum set of tags to poll and is notified to the Communications Module so no
tags are polled unnecessary at any given time. The Communications Engine then automatically groups and optimizes command
requests to PLCs for minimum communication overhead. All these processes, including communications, happen on a secon-
dary execution thread so users never feel or notice them.
The ultimate result is highly responsible HMI projects with controls that respond and react quickly to user actions and fast upda-
tes of interface elements.

Analogy with an Excel Spreadsheet
To help to understand the whole concept of the app it may be helpful to think on it as a Excel spreadsheet and compare what
Excel and HMI Editor do. Indeed the behavior of the expressions engine on Excel and HMI Editor are very similar in concept.
In the case of Excel you have Cells where you enter formulas. Excel Cells connect to other cells through expressions. For
example, in cell A2 you can write =B1+B4. In the context of Excel, when the value of B1 or B2 changes the value of A2 is auto-
matically updated.
So this is exactly what HMiPad does. Instead of Cells we have Objects with Properties. On the HMI Editor app an Object Pro-
perty is the equivalent of an Excel Cell. You connect Object Properties as you would Excel Cells. On Excel you refer to Cells by
Column-Row (example B1) On HMI Editor you refer to Object Properties by their names using a dot notation (example number-
Field.value).
Unless Excel Cells HMI Editor Object Properties have a meaning and perform a particular action, thus when you make them to
change there is an effect, possibly a visual one such as changing a Color.
Basically, understanding the concept unlocks the full power of the app. Expressions can be very simple or extremely complex,
and as we evolve the app more Objects with more Properties will be added.

Using Expressions.
HMI Editor expression syntax is based on the open source Ruby scripting language syntax. For basic operations this syntax is
similar to that of the ‘C’ programming language and virtually identical to all modern scripting languages.

page: / www.ritecontrol.com23 153

http://www.ritecontrol.com

HMI Editor

The Ruby language was chosen because it features a clean, easy to learn, object-oriented syntax with a particular focus on ex-
pressions allowing for practical ways to represent and dealt with several data types and formats with great flexibility. HMI Editor
supports most operators including all common Logical, Arithmetic and Comparison operators, as well as commonly used Ruby
functions and methods.
Support of Ruby expressions in HMI Editor is a subset of the Ruby language. Expressions are not, and do not pretend to be a
complete implementation of Ruby. In some cases we provided a single way to accomplish something that on Ruby can be done
in several ways, and in other cases we integrated several functionalities in single methods instead of implementing all of them.
So it is important to refer to this manual if you are also using a Ruby tutorial to determine what it is actually supported on HMI
Editor and which behavior differences may apply.
For those who already used Ruby, one of the most obvious differences between ‘real’ Ruby and HMI Editor is the treatment of
boolean values. Ruby treats everything as object pointers, including numbers, while HMI Editor keeps the traditional ‘C’ like
behavior. For example, in Ruby any number used in a boolean expression is a true value even if it holds a zero, just because it
exists as a pointer. HMI Editor, on the other hand, will still take 0 (zero) as false and non-zero as true, in the traditional sense of
earlier programming languages, and hopefully in accordance to what PLC programmers would expect or feel more comfortable
with.
You should always use values expressed in engineering units when using expressions in HMI Editor. The HMI Pad expressions
engine does not have a notion of PLC raw values, as this is handled by the communications component of the app.
When using expressions in your project you must be aware of the following:

*Object and Property names in expressions are case sensitive. This means that an object property named textField.-
value will not be the same than another one named textfield.value.

*Logical or Comparison operators assume non-zero values to be true and zero values to be false. The result of a Logical
or Comparison operator, however, is always a value of 0 or 1.

*Comparison operators are non-associative. This means that expressions such as a<b<c are not valid. You must use a<b
&& b<c instead.

*Assignments in expressions are not supported. Therefore expressions such as condition && (intProperty = 3)
will cause a syntax error on the assignment operator. Do not confuse the assignment operator = with the the equality operator
== which is fully supported.

*An expression is executed only when at least one of the referred object properties change. The process is totally trans-
parent and integrators might not need to know about how it works underneath. However, keeping the event driven nature of
HMI Pad in mind can help integrators to understand why and when dependent object properties including PLC tags will be writ-
ten or alarms will trigger as a consequence of an user interaction or a PLC Tag change that originated a cascade of change
events.

*Expressions containing Logical operators are no exception to the event driven design. They will be fully executed even
if a change occurs on the right side of the Logical operator. For example the expression condition1 && condition2 would
be always false if condition1 is false, however it will execute anyway as a consequence of a change on condition2. Alt-
hough the expression result will not change (it will remain false), the engine will still send a change event to any depending ex-
pressions, which could potentially cause other effects such as a PLC tag rewrite if the expression was linked to a PLC tag.

*Expressions can not create circular or recursive references. This means that a result of an expression can not be refitted
to another expression that ultimately would send a change event to the originating expression. This is not allowed at any level
on the expressions execution chain. For example the following expression textField.value+1 on the value property of
an object named textField is not valid because textField.value creates a circular reference around the value pro-
perty. Note that HMI Editor essentially behaves as a SpreadSheet program and this restriction also applies on SpreadSheet
programs..

  

page: / www.ritecontrol.com24 153

http://www.ritecontrol.com

HMI Editor

6.1 Data Types in Expressions
Expressions in HMI Editor support the following primitive data types: Number, String, Array, Dictionary, AbsoluteTime, and
Range. other native types include Point, Size, and Rect,
Appropriate operators and methods allow for conversion among types and to perform custom operations with great flexibility.
See the following sections for a discussion on methods and operators.
Mixing different data types such as Numbers, Strings or Arrays is only possible through the use of the appropriate operators and
methods that result in compatible types. A direct consequence is, for instance, that you can not concatenate a number to a
string unless you convert the number to a string first. Also, some operators have particular semantics depending on type. This is
just like most modern scripting languages including Ruby. On the following sections we discuss further on this and on other sub-
jects.

Numeric values.
Numeric values in expressions are internally stored as Double Float values (64 bits) All Arithmetic, Logical and Comparison ope-
rations are performed as Double Float operations. You may never expect to obtain truncated values from arithmetic calculations.
The above statement may change in the future to give support for true integer arithmetic. Currently, an implicit conversion to an
integer type is only performed for bit or bitwise operations on numbers, and indexed access to string or array elements. In other
cases you can use the to_i method to explicitly get the integral part of a numeric value according to your needs.
Constant numbers can be represented with optional decimal point and a base 10 exponent. Additionally, hexadecimal and bi-
nary notations are supported by using the 0x or 0b prefixes. The special forms true, false +inf and -inf are supported as well.
Examples:
-1.42 (decimal representation)
1.1666e+2 (decimal representation with exponent)
0xe0af (hexadecimal representation)
0b011011101 (binary representation)
true (same as 1)
false (same as 0)
-inf (very big negative number)
+inf (very big positive number)

Strings.
Strings are arbitrary sequences of characters that are manipulated as a whole,. Several operations can be performed on strings
such as concatenate, split or substring extraction by using the appropriate operators or methods. String literals are represented
enclosed in double quotes. Strings are internally encoded in a compatible type (usually UTF8)
Examples :
"This is a literal string"
"Дискретные датчики"
"ピーエルシーのアラーム表示"

Arrays.
Arrays are-indexed collections of data values. Each element in an array is associated with and referred to by an index.
Array indexing starts at 0. A negative index is assumed relative to the end of the array, that is, an index of -1 indicates the last
element of the array, -2 is the next to last element in the array, and so on.
Arrays can hold values of any data type such as Numbers, Strings, Dictionaries, Arrays and so on. Arrays can be created in ex-
pressions by using its implicit form consisting on separating their elements by commas and enclosing them in square brackets.

Example:
["element at index 0", 123.4, [33, obj.value]]

The above expression represents an array of three elements.
At index 0 we have a literal string: "element at index 0".

page: / www.ritecontrol.com25 153

http://www.ritecontrol.com

HMI Editor

At index 1 we have a numeric value: 123,4.
At index 2 we have an array of 2 elements with the number 33 and the variable ‘temperature’ as their components
Elements of the referred array can be accessed by index as shown next:
["element at index 0", 123.4, [33, obj.value]][1] would return 123.4

["element at index 0", 123.4, [33, obj.value]][-3] would return "element at index 0"

["element at index 0", 123.4, [33, obj.value]][-1][0] would return 33

["element at index 0", 123.4, [33, obj.value]][2][1] would return the actual value of obj.value
or assuming that the array is stored on an Object Property named exp.value the above is equivalent to:
exp.value[1] would return 123.4
exp.value[-3] would return "element at index 0"

exp.value[-1][0] would return 33

exp.value[2][1] would return the actual value of obj.value

Dictionaries.
Dictionaries are collections of unique keys and their values. They have some similarity to Arrays but where an array uses an in-
teger as in index, a Dictionary allows you to use any data type as a key to retrieve a value.
Keys on a dictionary can be any data type but Strings, Numbers and Absolute Times are the most obvious choices.
Values on a dictionary can be of any data type such as Numbers, Strings, Dictionaries, Arrays and so on. Dictionaries can be
created in expressions by using its implicit form consisting on separating their key:value elements by commas and enclosing
them in curly brackets.

Example 1:
{"red":"rojo", "blue":"azul"}

The above expression represents a dictionary of two elements.
For key "red" we have the string "rojo"
For key "blue" we have the string "azul"
Elements of the referred dictionary can be accessed by key as shown next:
{"red":"rojo", "blue":"azul"}["red"] would return "rojo"

{"red":"rojo", "blue":"azul"}["blue"] would return "azul"

or assuming that the dictionary is stored on an Object Property named exp.value the above is equivalent to:
exp.value["red"] would return "rojo"

exp.value["blue"] would return "azul"

Example 2:
{"red":["rojo", "rouge"], "blue":["azul", "bleu"]}

The above expression represents a dictionary of two elements.
For key "red" we have the array ["rojo", "rouge"]
For key "blue" we have the array ["azul", "bleu"]

Assuming that the dictionary is stored on an Object Property named exp.value elements can be accessed by key as shown be-
low:
exp.value["red"] would return ["rojo", "rouge"]

exp.value["blue"] would return ["azul", "bleu"]

exp.value["red"][0] would return "rojo"

exp.value["red"][1] would return "rouge"

page: / www.ritecontrol.com26 153

http://www.ritecontrol.com

HMI Editor

Example 3
{"red":{"sp":"rojo", "fr":"rouge"}, "blue":{"sp":"azul", "fr","bleu"}}

The above expression represents a dictionary of two elements.
For key "red" we have the dictionary {"sp":"rojo", "fr":"rouge"}
For key "blue" we have the dictionary {"sp":"azul", "fr","bleu"}

Assuming that the dictionary is stored on an Object Property named exp.value elements can be accessed by key as shown be-
low:
exp.value["red"] would return {"sp":"rojo", "fr":"rouge"}

exp.value["red"]["sp"] would return "rojo"

exp.value["red"]["fr"] would return "rouge"

Absolute Time values.
Absolute Times are similar to Numeric values with a special meaning.
An Absolute time is measured in seconds relative to the absolute reference date of January 1 1970 00:00:00 GMT. A positive
value represents a date after the reference date, a negative value represents a date before it. For example, the Absolute Time
1,000,000,000 seconds translates into the calendar time 9 September 2001 01:46:40 GMT
A Specific variable, $System.absoluteTime is provided to obtain the current time. Specific methods are also provided to extract
interesting calendar fields from an Absolute Time value, as well as to get custom string representations of calendar dates.
Examples
$System.absoluteTime may return 1355481788 (seconds count since the reference date)
$System.absoluteTime.year may return 2013
$System.absoluteTime.timeformatter("yyyy-MM-dd HH:mm:ss") may return the string "2013-01-20 10:15:34"

Ranges.
A Range represents an interval of numeric values with a beginning and an end. A range can be created with its implicit form
consisting on the lower and upper values separated by two points
Examples
0..100 represents the interval from 0 to 100 inclusive
-10..30 represents the interval from -10 to 30 inclusive

page: / www.ritecontrol.com27 153

http://www.ritecontrol.com

HMI Editor

6.2 Supported Operators and Operator precedence
The following table shows the available operators and its precedence. The table lists all operators from highest precedence to
lowest.

OPERATOR Description Associativity

() Parentheses (grouping). from inner to outer

. () [] Method/Property selection, Method/Function call, Array or String subscript left-to-right

! ~ + - Logical NOT, Bit Complement, Unary plus, Unary minus. left-to-right

* / % Multiply, Divide, Modulo left-to-right

+ - Addition/concatenation, Subtraction left-to-right

& Bitwise AND left-to-right

^ | Bitwise XOR, Bitwise OR left-to-right

< <= > >= != == Comparison operators not associative

&& Logical AND left-to-right

|| Logical OR left-to-right

.. Range operator not associative

?: Ternary conditional operator right-to-left

if then else Selective if then else clause right-to-left

, Expression List Operator (see The Expression List Operator section below) right-to-left

Operators are used in the usual way as per the Ruby or “C” language. Depending on data types involved the same operator
may have a different meaning. See Methods, Expressions and more about Operators.for further information.
The Expression List Operator (or comma operator) is not available on regular Ruby and it has a different meaning on "C"

page: / www.ritecontrol.com28 153

http://www.ritecontrol.com

HMI Editor

6.3 Functions, Methods and more about Operators
Methods can be applied to intermediate expressions or object properties to perform type conversions or to achieve particular
requirements. They are like computer language functions that perform particular tasks. Not all methods are applicable to all ty-
pes and their meaning can vary depending on type. Methods are invoked by appending a dot (method selector operator) follo-
wed by its name to the variable or subexpression they apply to.
Operators can also have a different meaning depending on the data type they are applied to.
In the following tables we describe the function of the applicable operators and methods depending on data type.

6.3.1 Numeric Operators and Methods

NUMERIC Description

num operator num2 Arithmetic, comparison, logical operators produce the expected usual results. Available operators
are listed on the operators precedence table shown earlier. The bitwise and complement operators
extract the integral part of the operands before computing the result
Example: 2+2 returns 4

Example: 0b1000 + 0b0001 returns 0b1001 (this is 17(dec))
Example: 0b1000 & 0b0001 returns 0b0000 (this is 0(dec))
Example: switch.value || switch2.value returns 1 (true) if one of them is true

num[n] Returns bit n from the integral part of num. Bit 0 is the least significant bit. The result can be only 0
or 1.
For example, number 3 is 0b011:
Example: 3[0] returns 1
Example: 3[1] returns 1
Example: 3[2] returns 0

num.to_i Returns the integral part of num.
Example: 3.666.to_i returns 3
Example: 2.78.to_i returns 2

num.to_f Returns the same num.

• num.to_s
• num to_s(fmt)

Returns a string representation of num optionally formatted according to fmt. For a description of
possible format specifiers refer to the format function.
Example: 3.666.to_s("%03d") results in “003”
Example: 3.666.to_s(“%04.1f") results in “03.7"
Example: 3.666.to_s results in "3.666"
Example: 25.to_s("%02.1f ºC") results in "25.0 ºC"

(Note that specifying a format in to_s is not a standard feature of Ruby)

num.chr Returns a string containing a single character represented by the Unicode character code num.
Example: 72.chr would return "H"

num.abs Returns the absolute value of num.
Example: (-3.66).abs would return 3.66

page: / www.ritecontrol.com29 153

http://www.ritecontrol.com

HMI Editor

num.round Returns num rounded to the nearest integer.
Example: (3.66).round would return 4

num.floor Returns the largest integer that is less than or equal to num.
Example: (3.66).floor would return 3

num.ceil Returns the smallest integer that is greater than or equal to num.
Example: (3.66).ceil would return 4
Example: (3.1).ceil would return 4

NUMERIC Description

page: / www.ritecontrol.com30 153

http://www.ritecontrol.com

HMI Editor

6.3.2 String Operators and Methods

STRING Description

"characters" Creates and returns a string containing the sequence of characters written between quotes.

str[n] Gets the Unicode representation of the character at index n in str. If n is negative indexes start at
the last character. Generates an error when attempting an out of bounds access.
Example: "Hello world"[0] returns 72 (72 is the Unicode character representation of ‘H’)
Unicode representation of English Language characters fully match the 7 bit standard ASCII char-
acter representation.

str[n,m] Substring. Returns a substring of str starting at n and continuing for m elements. Always returns a
string. Returns an empty string "" when access is out of bounds, m can not be negative. If n is
negative indexes start at the last character.
Example: "Hello world"[0,4] results in "hell"
Example: "Hello world"[-5,5] results in "world"
Example: "Hello world"[6,5] results in "world"

str+other_str Concatenation.
Example "hello" + "world" will give "hello world"

str1 comparison_op-
erator str2

String Comparison.
Returns 1 or 0 (true or false) when comparing two strings for equality or as if they were sorted in a
dictionary.
Example "alpha"<"beta" returns true because “alpha” is before “beta” in a word dictionary.
Example "alpha"=="beta" returns false because “alpha” is different than “beta”.
Example “alpha"!="beta" returns true because “alpha” is different than “beta”.

str.to_i Parses a str into an integer value or returns 0 if not possible
Example: "3".to_i returns 3

str.to_f Parses a str into a floating point number or returns 0 if the conversion is not possible
Example: "3.2".to_f returns 3.2

• str.to_s
• str.to_s(fmt)

Returns str. formatted according to fmt if specified, or str otherwise. Only the “s” format specifier is
relevant for strings.
Example: "World".to_s("Hello %s") would give " Hello World "

str.split(str2)
str.split

Creates an array of strings by splitting str using str2 as a delimiter but not including it. If str2 is an
empty string it splits str into each one of its characters. If str2 is not given it returns an array with
str as the single element.
Example "Hello World".split(" ") returns ["Hello","World"]
Example "08-04-2014".split("-") returns ["08","04","2014"]
Example "08-04-2014".split("") returns [“0","8","-","0","4","-","2","0","1","4"]
Example "Hello World".split("")

returns [“H","e","l","l","o"," “,"W","o","r","l","d"]
Example "08-04-2014".split returns ["08-04-2014"]

page: / www.ritecontrol.com31 153

http://www.ritecontrol.com

HMI Editor

str.length Returns the number of characters in str
Example "Hello".length returns 5

STRING Description

page: / www.ritecontrol.com32 153

http://www.ritecontrol.com

HMI Editor

6.3.3 Array Operators and Methods

ARRAY Description

[d1,d2,...] Creates an Array with the elements d1, d2 and so on. Array elements can be any data types in-
cluding numbers, strings, ranges, dictionaries or other arrays.
Example: ["one","two","three"] would create an array containing three string elements.
Example: [1,4,6] would create an array containing three integer elements.
Example: ["one",2,"three"] would create an array containing three mixed type elements.
Example: the following expression [1,"two",[10,"eleven"]] would create an array containing three el-
ements: the array will have a number at position 0, a string at position 1 and a two elements array
at position 2.

arr[n] Get element at index n from arr. If ‘n’ is negative indexes start at the last character. Generates an
error when attempting an on out of bounds access
Example: ["one","two","three","four"][0] returns "one"
Example: ["one","two","three","four"][1] returns "two"
Example: ["one","two",”three","four"][-1] returns “four"
Example: ["one","two",”three","four"][3] returns “four"
Example: [“one”,”two”,["three","four"]][2][1] returns "four"

arr[n,m] Subarray. Returns a subarray of arr starting at n and continuing for m elements. Always returns an
array. It will return an empty array [] when access is beyond limits. m can not be negative.
Example: ["one","two","three","four"][0,2] returns ["one","two"]
Example: ["one","two","three","four"][-3,1] returns ["two"]
Example: ["one","two","three","four"][2,2] returns ["three","four"]
Example: [“one”,”two”,["three","four"]][1,2] returns ["two",["three","four"]]

arr + arr1 Returns a new array built by concatenating the two arrays together
Example: ["one","two"]+["three","four"] returns ["one","two","three","four"]
Example: [0,["one","two"]]+["three"] returns [0,["one","two"],"three"]

arr.join(str) Returns a string created by converting each element of arr into a string, and concatenating them
using str as a separator
Example: ["one","two",3,4].join(":") returns "one:two:3:4"
Example: [“Hello”,"World"].join(" ") returns “Hello World"

arr.fetch(n,d) Returns the element at position n or returns d if n goes outside the array bounds.
n must be numeric value representing the element index. Negative values of n count from the end
of the array.
d can be any numeric, string or array value.
Example: ["one","two","three","four"].fetch(0,"none") returns "one"
Example: ["one","two","three","four"].fetch(4,"none") returns "none"

arr.length Returns the number of elements in arr.
Example: ["one","two"].length results in 2

page: / www.ritecontrol.com33 153

http://www.ritecontrol.com

HMI Editor

arr.min Returns the smaller element in arr. Elements in the array must all be the same time, such as all
Strings or Numbers.
Example: [3, 2, 1].min results in 1
Example: ["alpha","beta"].min results in "alpha"

arr.max Returns the bigger element in arr. Elements in the array must all be the same time, such as all
Strings or Numbers.
Example: [3, 2, 1].max results in 3
Example: ["alpha","beta"].max results in "beta"

ARRAY Description

page: / www.ritecontrol.com34 153

http://www.ritecontrol.com

HMI Editor

6.3.4 Dictionary Operators and Methods

DICTIONARY Description

{k1:v1,k2:v2,
k3:v3,...}

Creates a Dictionary with the specified key:value pairs (k1:v1, k2:v2 and so on) and returns it.
Keys can be any data type but most often you will use numbers, strings or absolute times.
Values can be any data type including numbers, strings, ranges, arrays or other dictionaries
Keys can not be repeated in a dictionary, so if two or more keys are identical only the last one
appearing on the comma separated list will be used.
Example1: the following expression {1:"one", 2:"two"} would create a dictionary containing two el-
ements, the dictionary will have the string "one" for key 1 and the string "two" for key 2

dict[k] Get value for key k from dict. Generates an error if k is not in the dictionary.
Example: {1:"one", 2:"two"}[1] returns "one"

Example: {"one":1, "two":2}["one"] returns 1

dict1 + dict1 Returns a new dictionary containing all key:value pairs of dict1 and dict2 If the same key is
present in dict1 and dict2 the resulting dictionary will get the value in dict2 for that key
Example: {1:"one", 2:"two"} + {3:"three", 4:"four"}

returns {1:"one", 2:"two", 3:"three", 4:"four"}

Example: {"age":23, "name":"Mary"} + {"age":24}
returns {"age":24, "name":"Mary"}

dict.fetch(k,d) Returns the value for key k or returns d if the dictionary does not contain k
Example: {1:"one", 2:"two"}.fetch(1,"none") returns "one"
Example: {1:"one", 2:"two"}.fetch(3,"none") returns "none"

dict.length Returns the number of elements -same as key:value pairs- in dict.
Example: {1:"one", 2:"two"}.length results in 2

dict.keys Returns an array containing all the keys in dict. The length of the returned array will be the same
as the length of dict .Since dictionaries are not an ordered collection the order of elements in the
returned array is undefined. You should never assume that keys will be returned on a particular
order. Since keys are unique on a dictionary the returned array will contain unique elements too.
Example: {1:"one", 2:"two"}.keys returns [1,2]
Example: {"one":1, "two":2}.keys returns ["one","two"]

dict.values Returns an array containing all the keys in dict. The length of the returned array will be the same
as the length of dict. Since dictionaries are not an ordered collection the order of elements in the
returned array is undefined. You should never assume that values will be returned on a particular
order. Repeated values in the dictionary will result in repeated elements in the returned array.
Example: {1:"one", 2:"two"}.values returns ["one","two"]
Example: {"one":1, "two":2}.values returns [1,2]

page: / www.ritecontrol.com35 153

http://www.ritecontrol.com

HMI Editor

6.3.5 Absolute Time Operators and Methods

ABSOLUTE TIME Description

time + num
num + time

Adding a number num to an absolute time time results in the absolute time incremented by the
number of seconds specified in num. Note that it is not possible adding two absolute times
Example: $System.absoluteTime + 0.1 will return a time that is 100 milliseconds ahead of now.

• time - num
• time2 - time1

Subtracting a number num to an absolute time time results in the absolute time decremented by
the number of seconds specified in num.
Subtracting two absolute times will result in a number representing the elapsed time between the
two expressed in seconds
Example: $System.absoluteTime - 60 will return the time that was 1 minute ago.

t1 comparison_op-
erator t2

Absolute Time Comparison.
Returns 1 or 0 (true or false) when comparing two absolute times. In the context of absolute times
a time is greater than a base time if it is a time that happened or will happen after the base time.

time.to_f Converts an absolute time to a number representing the seconds count since the reference date
Example $System.absoluteTime.to_f may return 1355481788

time.timeformatter(f
mt)

The timeformatter method returns a string representation of an absolute time given a format
string.
When applying this method time is a numeric value meant to hold a specific point in time ex-
pressed in seconds relative to 1-Jan-1970, for example an absolute time value provided by the
‘$System.absoluteTime’ object property. The fmt parameter is a format sting as specified in the
‘Unicode Technical Standard #35, Appendix F’. The method will return a string representation of
the date and time for the given absolute time taking into account the current time zone location of
the device.
For more information on valid format strings for the fmt parameter you can have a look at:
http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
When looking at this spec be aware that character symbols in the format string are case sensitive
and thus they may have different meaning depending on case, for instance ‘yy’ will represent a
year whereas ‘YY’ will represent a week of year.
Example:
$System.absoluteTime.timeformatter("yyyy-MM-dd HH:mm:ss") may return the string "2012-12-28
10:15:26"

time.year Returns the Gregorian Calendar year for an absolute time time at the current time zone location

time.month Returns the Gregorian Calendar month for an absolute time time at the current time zone loca-
tion. Range of returned values is 1 to 12

time.day Returns the Gregorian Calendar day for an absolute time time at the current time zone location.
Range of returned values is 1 to 31

time.wday Returns the day of the week for an absolute time time at the current time zone location, 0 is Sun-
day, 1 is Monday and 6 is Saturday.

page: / www.ritecontrol.com36 153

http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
http://www.ritecontrol.com

HMI Editor

The following illustration demonstrates the use of a time expression on a label item.

time.yday Returns the day of the year for an absolute time time at the current time zone location. Range of
returned values is 1 to 366

time.week Returns the week of the year for an absolute time time at the current time zone location. Range of
returned values is 1 to 53

time.hour Returns the Gregorian Calendar hour for an absolute time time at the current time zone location.
Range of returned values is 0 to 23

time.min Returns the Gregorian Calendar minutes for an absolute time time at the current time zone loca-
tion. Range of returned values is 0 to 59

time.sec Returns the Gregorian Calendar seconds for an absolute time time at the current time zone loca-
tion. Range of returned values is 0 to 59

ABSOLUTE TIME Description

page: / www.ritecontrol.com37 153

http://www.ritecontrol.com

HMI Editor

6.3.6 Range Operators and Methods

6.3.7 Rect, Point and Size Methods

RANGE Description

num1..num2 Creates and returns a range starting at num1 and ending at num2 inclusive

range.begin Returns the staring value a range
Example: (0..9).begin returns 0

range.end Returns the staring value a range
Example: (0..9).end returns 9

RANGE Description

rect.origin Returns a point type value representing the top left coordinates of rect

rect.size Returns a size type value representing the width and height of rect

point.x Returns the x coordinate of point as a number

point.y Returns the y coordinate of point as a number

size.width Returns the width of size as a number

size.height Returns the height of size as a number

page: / www.ritecontrol.com38 153

http://www.ritecontrol.com

HMI Editor

6.3.8 MATH Methods

MATH Description

Math.atan2(y,x) Computes the principal value of the arc tangent of y/x, using the signs of both arguments to de-
termine the quadrant of the return value.
The atan2() function is used mostly to convert from rectangular (x,y) to polar (r,θ) coordinates that
will satisfy x = r*Math.cos(θ) and y = r*Math.sin(θ).
In general, conversions to polar coordinates are computed in this way:
r = Math.sqrt(x*x+y*y)
θ = Math.atan2(y,x)

Math.cos(x) Computes the cosine of x (measured in radians)

Math.exp(x) Calculates an exponential function (e raised to the power of x)

Math.log(x) Calculates the natural logarithm of x.

Math.log10(x) Calculates the base 10 logarithm of x.

Math.sin(x) Computes the sine of x (measured in radians)

Math.sqrt(x) Computes the non-negative square root of x

Math.tan(x) Computes the tangent of x (measured in radians)

Math.PI Returns the π constant number

Math.floor(x) Returns the largest integer less than or equal to x.
** Deprecated starting from version 2.1. Please use num.floor instead

Math.ceil(x) Returns the smallest integer greater than or equal to x.
** Deprecated starting from version 2.1. Please use num.ceil instead

page: / www.ritecontrol.com39 153

http://www.ritecontrol.com

HMI Editor

The following illustration uses a MATH expression to display a value on a label item.

page: / www.ritecontrol.com40 153

http://www.ritecontrol.com

HMI Editor

6.3.9 Built-in Functions

FUNCTIONS Description

format(fmt,...) Returns a string where the list of arguments following fmt is formatted according to fmt, fmt is a
Formating specification string.
Formatting specifications in fmt are essentially the same as those of the sprintf function in the C
programming language. Conversion specifiers in fmt begin with % and are replaced by a formatted
string of the corresponding argument. A % character followed by another % will yield the ‘%’ char-
acter. A list of supported conversion fields is given on the next section.
Examples:
format("Room Temperature is: %4.1f", 25) will return the string "Room Temperature is: 25.0"

format("%02d:%02d:%02d",hours,minutes,seconds) may return the string "01:15:48" assuming the
variables ‘hours’ ‘minutes’ and ‘seconds’ contain the given values.
format("Throughput: %4.1f%%", 25) will return the string "Throughput: 25.0%"

• rand
• rand(n)

Returns a semi-random number on a specific interval.
When no argument is given it returns a numeric floating point value 'r' in the range 0 <= r <1
When an integer argument is given it returns an integer value 'i' in the range 0 <= i < n
Examples:
rand may return 0.28384618
rand(10) may return 7

page: / www.ritecontrol.com41 153

http://www.ritecontrol.com

HMI Editor

6.3.10 System Methods

SYSTEM Description

• SM.color(r,g,b)
• SM.color(r,g,b,a)
• SM.color(str)

Returns a numeric representation of a color. You provide the RGB color coordinates as
values ranging from 0 to 255 in r, g and b, with optional alfa a from 0 to 1
Alternatively you can provide a string with the color name in str.

SM.deviceID Returns an unique identifier string representing the iOS device the app is running on. The
returned string is always the same for the same device but a different value is returned for
different devices.
Returned values will look like this: "846AB563-760E-45BA-8E9E-88BE1D0A5ED7"

SM.point(x,y) Returns a point type value from its x, y coordinates

SM.size(w,h) Returns a size type value.with width w, and height h.

SM.rect(x,y,w,h) Returns a rect type value.with x, y top left coordinates, width w, and height h.

SM.allFonts() Returns an array of strings with all the available font names.

SM.allColors() Returns an array of strings with all the available color names.

SM.encrypt(s,key) Returns a string representing the encrypted version of the string s by applying a symmet-
ric AES256 algorithm using key as the encryption key.
Example: SM.Encrypt("myString","aPassword") will encrypt "myString" using "aPassword"

SM.decrypt(s,key) Returns the original unencrypted string from the encrypted string s by applying an
AES256 decryption algorithm based on key. This method will return the original string that
was passed as the first parameter to SM.encrypt provided the same key was used.
Example: SM.decrypt(SM.encrypt("myString,"pass"), "pass") will return "myString"

• SM.mktime(y)
• SM.mktime(y,m)
• SM.mktime(y,m,d)
• SM.mktime(y,m,d,h)
• SM.mktime(y,m,d,h,mn)
• SM.mktime(y,m,d,h,mn,s)

Returns an absolute time that is a representation of the time period that is implicit on the
parameters. In particular, it returns the absolute time of the first instant of the intended
passed in time period.
You can use this method to provide a custom time reference to data presenter objects.
Examples
SM.mkTime(2014) will return the first instant of year 2014 as an absolute time
SM.mkTime(2014,2) will return the first second of February, 2014 as an absolute time
SM.mkTime(2014,2,3) will return the first second of February, 3rd, 2014
SM.mkTime(2014,2,3,12) will return midday time on February, 3rd, 2014
SM.mkTime(2014,2,3,12,5) will return time on February, 3rd, 2014 at 12:05:00
SM.mkTime(2014,2,3,12,5,45) will return time on February, 3rd, 2014 at 12:05:45

page: / www.ritecontrol.com42 153

http://www.ritecontrol.com

HMI Editor

6.4 Format specifiers for ‘format’ and ‘to_s’
The built-in function format returns a string formatted according to a format string following the usual printf conventions of the C
language. In addition, format accepts %b for binary. The to_s method also support formatting when applied to numbers or
strings.
HMI Editor. format specifiers adopt the following form:

%<flags><width><.precision>specifier

Where specifier is the most significant one and defines the type and the interpretation of the value of the corresponding argu-
ment (‘<‘ and ‘>’ denote optional fields).
For types supporting the to_s method format specifiers are also applicable

The following format conversion specifiers are available:

For the meaning and possible contents of the optional flags, width, and precision fields refer to the sprintf specification:
http://www.cplusplus.com/reference/cstdio/printf/
Since there is no need for the length field it is not available neither in Ruby or HMI Editor.

FORMAT
SPECIFIER Description format function

support
to_s method
support

b Binary integer YES YES

c Single character YES YES

d,i Decimal integer YES YES

e Exponential notation (e.g., 2.44e6) YES YES

E Exponential notation (e.g., 2.44E6) YES YES

f Floating-point number (e.g., 2.44) YES YES

g Use the shorter of e or f YES YES

G Use the shorter of E or f YES YES

o Octal integer YES YES

s String or any object converted using to_s YES YES

u Unsigned decimal integer YES YES

x Hexadecimal integer (e.g., 39ff) YES YES

X Hexadecimal integer (e.g., 39FF) YES YES

page: / www.ritecontrol.com43 153

http://www.ritecontrol.com
http://www.cplusplus.com/reference/cstdio/printf/

HMI Editor

6.5 The ternary conditional operator
The ternary conditional operator provide conditional execution of expressions. Its syntax is the following:

expr ? expr1 : expr2

The expression above returns expr1 if expr is not zero (true) or expr2 otherwise.

The ternari conditional operator executes when any of expr, expr1, expr2 generate a change event. The result is always upda-
ted and will be consistent with the values of expr, expr1 and expr2 at all times. The execution will in turn trigger relevant change
events up the expressions tree just as any expression would do.

Consider the following case

switchColorSelection.value ? color1.value : color2.value ;

The resulting color will be always updated according to switchColorSelection upon any change on switchColorSelection, color1
or color2 values

page: / www.ritecontrol.com44 153

http://www.ritecontrol.com

HMI Editor

6.6 The ‘if-then-else’ clause
The if-then-else clause provide conditional choice of expressions. It is used as follows:

if expr [then] expr1 [else expr2] [end]

Executes expr1 if expr is not zero (true). If expr is zero (false) expr2 is executed instead. Items between brackets are optional.

The if-then-else clause only attends to expr change events. Any changes in expr1 or expr2 will not have an effect until expr exe-
cutes. Furthermore, if expr is false and expr2 was not specified, the execution tree is trimmed at this stage and no further execu-
tion up the expresion tree will happen.
You should only use the if-then-else clause when the above is required, otherwise use the ternary conditional operator.

The if-then-else clause is useful in cases where you want to achieve a differential effect, for example to trigger an event when a
condition goes from false to true but not the opposite. This is not possible with the ternary conditional operator because it will
always execute both ways.

Consider the following expression entered on the value property of a lamp object:

if startButton.value then 1 else (if stopButton.value then 0)

The previous lines asume the existence of a start button startButton and a stop button stopButton. When the start button is tou-
ched 1 will be written to lamp.value. When the stop button is touched 0 will be written to lamp.value. Because we are using the
if-then-else clause, no change event will be sent to lamp.value upon release of the buttons.

Another use of the if then else clause is the implementation of a counter.
Consider a background item named counter and the following expression entered on its value property

if resetButton.value then 0 else (if incrementButton.value then counter.value+1)

The resetButton and incrementButton buttons provide in this case the interface for incrementing the counter value.

NOTE: We recommend to restrict the use of the 'if-then-else' clause to cases where it is strictly necessary as described above
and only where the ternary conditional operator would not work.
Ab-using or mis-understanding the purpose and consequences of using it of may create uninitialized values or properties spe-
cially on first project launch or update. It is important to always foresee such circumstance and provide an initializer to values
that otherwise would never be valid.
For example on the counter example provided above, we incorporated a reset button to allow users to initialize the counter to a
valid initial known state.

page: / www.ritecontrol.com45 153

http://www.ritecontrol.com

HMI Editor

6.7 The Expression List Operator
The Expression List Operator is an advanced feature that enables you to selectively execute one of several expressions based
on the actual flow of change events in the Expression Engine.
Its purpose is similar to the if-then-else clause but in this case the result does not depend on a explicit condition but on the last
expression on the list that received a change.
Consider the following expression list.
exp1, exp2, exp3

We have a list of three expressions separated by commas. The result of the above will be either exp1, exp2 or exp3 depending
on the one that last changed. For instance if exp1 just received a change, then the result of the list will be exp1 If now exp3
changes then the result will be exp3
Note that the result is always the first expression in the list that changed, For example the following expression list exp1+1,
exp1+2 will always return exp1+1 upon a change of exp1 because it s the first in the list to change .

One particularly interesting use case of the Expression List Operator is when you need to write a value to a PLC tag based on
more than one item on screen. For example you want to write a set-point value on a PLC Tag based on user action on a slider
or on entering a value on a number field on the interface.
You can enter the following on the write_expression field of the PLC tag
slider.value, numberField.value

In this case, a change on slider.value or the numberField.value will result on the writing or the resulting value to your PLC Tag

page: / www.ritecontrol.com46 153

http://www.ritecontrol.com

HMI Editor

6.8 Putting it all together. Advanced Expressions Examples
You can use expressions in your HMI Editor project in many advanced ways. Expressions provide a lot of power and flexibility
and most of the features of HMI Editor are unveiled through the advanced use of expressions.
We present next some examples of advanced expressions involving several operators, methods and data types to obtain parti-
cular results. This is of course not exhaustive as you can use expressions for tasks that we could not even imagine.

Converting an arbitrary number of seconds to hh:mm:ss format
The following expression shows how to get a string in the form ‘hh:mm:ss’ from a numeric value containing seconds.In this
example x contains the total number of seconds to be converted to the desired format.

[(x/3600).to_s("%02d"), ((x%3600)/60).to_s("%02d"), (x%60).to_s("%02d")].join(":")

The operators % and / are used to calculate hours, minutes, seconds as numeric values. These are then truncated to integer
with the to_i method and successively converted to formatted strings with to_s. The resulting individual strings are embedded
into an array and then joined by means of the the join method using ‘:’ as separator.

Instead of using the join method we could have used the format function as a more convenient way. Consider the following:
format("%02d:%02d:%02d”, x/3600, (x%3600)/60, x%60)

in this case the format specifiers in the format string are just replaced with the relevant time values.

Calculating seconds from a string having the hh:mm:ss format.
Just to illustrate what expressions allow to do let’s try now to get the original seconds value from a string already in the
hh:mm:ss format. To do so we can use the following expression:

3600*t.split(":").fetch(-3,0).to_i + 60*t.split(":").fetch(-2,0).to_i + t.split(":").fetch(-1,0).to_i

In this case we extract separately the hours, minutes and seconds as numeric values from the string, we multiply them by 3600,
60 and 1 respectively and then add them to get the total number of seconds. The extraction of each value from the original
string is performed by the split method using ‘:’ as delimiter. The relevant element from the split array is obtained with the fetch
method. We use 0 as the default value for fetching.
Note that we could have used simple array indexing such as t.split(":")[-3] to get each part of the original string but this would
lead to potential out of bound errors in case the original string had some missing part. Particularly, if the original string did only
contain minutes and seconds, such as "50:30" (50 minutes, 30 seconds) the referred indexed expression would give an out of
bounds error as it would attempt to access a non existing element (the one before the first one).
Note also that in all cases we use negative indexing because we interpret that the last part is always meant to be the seconds,
the previous to the last one the minutes and so on.
The proposed expression can be optionally optimized by storing the split string in a temporary variable (background expression)
so that the splitting is only performed once. If we apply this optimization.the final solution would look as follows:

t.split(":") <- we store this on the value property of tspt
3600*tspt.value.fetch(-3,0).to_i + 60*tspt.value.fetch(-2,0).to_i + tspt.value.fetch(-1,0).to_i

Creating a label that alternates between displaying the current time and an arbitrary value
In this example we will create a label that shows a living digital clock showing the current time. Every 5 seconds the time is al-
ternated with a temperature value given in an item named temperature. In order to achieve this we enter the following expres-
sion in the value property of a label item.

$System.pulse10s ? "Time: "+$System.date.split(" ")[1] : "Temp: "+temperature.value.to_s("%3.1f")+" ºC"

page: / www.ritecontrol.com47 153

http://www.ritecontrol.com

HMI Editor

We use the ternary operator to switch between the time and the temperature depending on the $System.pulse10 pulsating pro-
perty. For the clock we take $System.date and discard the date portion by splitting it out. The temperature is presented format-
ted with a custom prefix and suffix appended to the actual value.

We can alternatively use the format function to simplify a bit some portions of the expression

$System.pulse10s ? format("Time: %s", $System.date.split(" ")[1]) : format("Temp: %3.1f ºC", temperature.value)

page: / www.ritecontrol.com48 153

http://www.ritecontrol.com

HMI Editor

7 Object Properties Reference
Refer to this section for reference of all Object Property descriptions.For classes of objects that share similar properties they are
presented hierarchically. The same hierarchy is shown in most cases in form of table sections in the Object Configuration panel.

7.1 System Objects
They are special objects that provide device sensor data, and other system or project related information.

page: / www.ritecontrol.com49 153

http://www.ritecontrol.com

HMI Editor

7.1.1 $Project
The $Project Object contains properties that may affect the entire project.

PROPERTY TYPE DESCRIPTION

currentPageIdenti-
fier

String
(read/write

String)

When you set a string to this property the system searches for a page with a
matching pageIdentifier .If found, the system moves to that page. Nothing hap-
pens if no page has a pageIdentifier matching the string
Example: If you have two pages with pageIdentifiers "PAGE1" and "PAGE2" and
two buttons named button1 and button2 you can use the ternary conditional oper-
ator like this.
button1.value ? "PAGE1" : button2.value ? "PAGE2" : ""

title (constant
String)

The Title that will appear on the tool bar when this project is open.You can use this
value for your own purposes as well.

shortTitle (constant
String)

Reserved for future use. You can still use this for your own purposes.

allowedOrientation (constant
number)

Determines which orientations are available for the project on the iPad interfaceId-
iom. When you chose an allowed orientation, the project is forced to display on
that orientation. This property allows you to design projects that do not support
multiple orientations.

• Any Orientation: Project pages will rotate and display using their settings on
both orientations.

• Landscape Only: Project pages will keep Landscape mode regardless of device
orientation.

• Portrait Only: Project pages will keep Portrait mode regardless of device orien-
tation

page: / www.ritecontrol.com50 153

http://www.ritecontrol.com

HMI Editor

allowedOrienta-
tionPhone

(constant
number)

This property has the same meaning than allowedOrientation except that it refers
to the iPhone/iPod interface idioms.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com51 153

http://www.ritecontrol.com

HMI Editor

7.1.2 $System
The $System object provides the interface for using system or project related info on your project:

PROPERTY TYPE DESCRIPTION

SMPulse1s
SMPulse10s
SMPulse30s
SMPulse60s

Bool
(read only
Number)

They generate a square wave signal with the period implicit on the variable name.
They can be used to implement a Keep-Alive tag, to write periodically a value on a
PLC, or to trigger periodic events for any purpose.

SMPulseOnce Bool
(read only
Number)

Provides a pulse output that is triggered only once upon first project launch. This
can be used for initialization purposes, for example in combination with the 'if then'
clause

date String
(read only

String

Text representation of the current date and time in the following format:
 "yyyy-MM-dd HH:mm:ss"

absoluteTime Double
(read only
Absolute

Time)

Current absolute time. Absolute time is measured in seconds relative to the abso-
lute reference date of Jan 1 1970 00:00:00 GMT.
You can use this variable in combination with Time methods to obtain string repre-
sentations or to get calendar parts as numeric values.

page: / www.ritecontrol.com52 153

http://www.ritecontrol.com

HMI Editor

commState Integer
(read only
Number)

A value indicating the current communication state of HMI Editor. Possible values
are the following:
0 - Communications running with all PLC connections linked.
1 - Monitor is switched off.
2 - One or more PLC are not linked or a new connection is in course. Partial link
state.
3 - General communications error. No communication is established.
This variable can be used to implement alarms related to PLC reachability or to
show/hide interface elements depending on PLC availability.

commRoute Integer
(read only
Number)

A value indicating the current communications route. Possible values are the fol-
lowing:
0 - No remote communications are active, but some local connections can still be
running.
1 - All active communication links are running through local connection settings.
2 - At least one PLCs is linked through remote connection settings.
3 - All available PLC connections are active and linked through remote connection
settings.
This variable can be used to implement behavior dependent on local/remote con-
nections type. For example you may want that some interface elements or project
features are not available when accessing from remote locations.

networkName String
(read only

String

For WiFi networks it will provide the Name of the wireless network the iOS device
is connected.
Returned Names may look like this: "StarBucks"

networkBSSID String
(read only

String

For WiFi networks it will provide the BSSID of the wireless router the iOS device is
connected. This can be used to filter some interface elements or to perform spe-
cial actions based on physical connection to particular WiFi spots.
Returned BSSID may look like this: "0:24:36:a7:e6:9b"

currentUserAc-
cessLevel

Integer
(read only
Number)

Access Level of the currently logged user. Currently, this is always 9.

currentUserName String
(read only

String

User Name of the currently logged user.

interfaceOrienta-
tion

Integer
(read only
Number)

A value of 1 if the current Interface Orientation is Landscape, or a value of 2 if it is
Portrait. This variable can be used to implement behavior or visual changes de-
pending on orientation. For example you can decide to hide particular visual item
on pages depending on orientation.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com53 153

http://www.ritecontrol.com

HMI Editor

interfaceIdiom Integer
(read only
Number)

A value of 1 if the current Interface Idiom is an iPad, or a value of 2 if it is an
iPhone or iPod. This variable can be used to implement behavior or visual
changes depending on the device.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com54 153

http://www.ritecontrol.com

HMI Editor

7.1.3 $Location
The $Location object provide the gateway for the delivery of location and heading related events to your project.

PROPERTY TYPE DESCRIPTION

latitude Double
(read only
Number)

The latitude in degrees. Positive values indicate latitudes north of the equator.
Negative values indicate latitudes south of the equator.

longitude Double
(read only
Number)

The longitude in degrees. Measurements are relative to the zero meridian, with
positive values extending east of the meridian and negative values extending west
of the meridian.

horizontalAccura-
cy

Double
(read only
Absolute

Time)

The radius of uncertainty for the location, measured in meters. The location’s lati-
tude and longitude identify the center of the circle, and this value indicates the ra-
dius of that circle. A negative value indicates that the location’s latitude and longi-
tude are invalid.

verticalAccuracy Double
(read only
Number)

The accuracy of the altitude value in meters. The value in the altitude property
could be plus or minus the value indicated by this property. A negative value indi-
cates that the altitude value is invalid.

speed Double
(read only
Number)

The instantaneous speed of the device in meters per second. This value reflects
the instantaneous speed of the device in the direction of its current heading. A
negative value indicates an invalid speed. Because the actual speed can change
many times between the delivery of subsequent location events, you should use
this property for informational purposes only.

page: / www.ritecontrol.com55 153

http://www.ritecontrol.com

HMI Editor

course Double
(read only

Double

The direction in which the device is traveling. Course values are measured in de-
grees starting at due north and continuing clockwise around the compass. Thus,
north is 0 degrees, east is 90 degrees, south is 180 degrees, and so on. Course
values may not be available on all devices. A negative value indicates that the di-
rection is invalid.

magneticNorth Double
(read only

Double

The heading (measured in degrees) relative to magnetic north. The value in this
property represents the heading relative to the magnetic North Pole, which is dif-
ferent from the geographic North Pole. The value 0 means the device is pointed
toward magnetic north, 90 means it is pointed east, 180 means it is pointed south,
and so on.

trueNorth Double
(read only
Number)

The heading (measured in degrees) relative to true north. The value in this proper-
ty represents the heading relative to the geographic North Pole. The value 0
means the device is pointed toward true north, 90 means it is pointed due east,
180 means it is pointed due south, and so on. A negative value indicates that the
heading could not be determined.

headingAccuracy Double
(read only

Double

The maximum deviation (measured in degrees) between the reported heading and
the true geomagnetic heading. A positive value in this property represents the po-
tential error between the value reported by the magneticNorth property and the
actual direction of magnetic north. Thus, the lower the value of this property, the
more accurate the heading. A negative value means that the reported heading is
invalid, which can occur when the device is uncalibrated or there is strong inter-
ference from local magnetic fields.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com56 153

http://www.ritecontrol.com

HMI Editor

7.1.4 $Motion
The $Motion Object is the gateway to the motion services provided by iOS. These services provide accelerometer data, rotation-
rate data, magnetometer data, and other device-motion data such as attitude.

PROPERTY TYPE DESCRIPTION

accelerometerA-
vailable

Bool
(read only
Number)

A value of 0 or 1 value that indicates whether an accelerometer is available on the
device.

gravity Doubles
(read only

Array
ofNumbers)

An array of 3 elements containing the gravity acceleration vector expressed in the
device's reference frame.

userAcceleration Doubles
(read only
Array of

Numbers)

An array of 3 elements containing the acceleration that the user is giving to the
device around the three axes.

gyroscopeAvail-
able

Bool
(read only
Number)

A value of 0 or 1 that indicates whether a gyroscope is available on the device.

rotationRate Doubles
(read only
Array of

Numbers)

An array of 3 elements containing the rotation rate of the device around the three
axes

page: / www.ritecontrol.com57 153

http://www.ritecontrol.com

HMI Editor

magnetometerA-
vailable

Bool
(read only
Number)

A value of 0 or 1 that indicates whether a magnetometer is available on the device

magneticField Doubles
(read only
Array of

Numbers)

An array of 3 elements containing the magnetic field vector with respect to the de-
vice.

attitude Doubles
(read only
Array of

Numbers)

An array of 3 elements containing the attitude as Euler Angles. The attitude is a
representation of the the orientation of the device relative to the direction of travel.
The returned array contains the 'roll', the 'pitch' and the 'yaw' components.
A roll is a rotation around a longitudinal axis that passes through the device from
its top to bottom.
A pitch is a rotation around a lateral axis that passes through the device from side
to side.
A yaw is a rotation around an axis that runs vertically through the device. It is per-
pendicular to the body of the device, with its origin at the center of gravity and di-
rected toward the bottom of the device.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com58 153

http://www.ritecontrol.com

HMI Editor

7.1.5 $Player
The $Player Object provides the interface for playing audio in your project.

PROPERTY TYPE DESCRIPTION

play Bool
(read/write
Number)

When this property transitions to true (non zero) a player will initialize and will start
playing.

stop Bool
(read/write
Number)

When this property transitions to true (non zero) any playing audio will stop.

repeat Bool
(read/write
Number)

When this property is true (non zero) playing will repeat after reaching the end.

title String
(read/write

String)

The String that will show as title in the player

url Url
(read/write

String)

The String assigned to this property provides the name of an audio asset from the
device iPod Library, an audio file from an external url, or an audio file in the Local
Assets section.
To play an audio file in the Local Assets you simply enter its file name with exten-
sion as a string:
Example : “myAudioFile.mp3”
iPod Library items must be moved into a Playlist named “HMiPad” to be playable
by this app. You identify assets on the iPod Library with the "iPod-Library://" url
schema preceding the asset name.
Example : "iPod-Library//Animal Instinct”
You can also point to an audio file on a remote http server by using the “http://“
prefix.
Example : "http//Animal Instinct"

page: / www.ritecontrol.com59 153

http://www.ritecontrol.com

HMI Editor

7.1.6 $Scanner
The $Scanner Object provides the interface for bar code scanning.
The following bar code types are supported:

UPC-A 
UPC-E 
Code 39  
Code 39 mod 43  
Code 93  
Code 128  
EAN-8  
EAN-13  
Aztec 
PDF417  
QR

PROPERTY TYPE DESCRIPTION

scan Bool
(read/write
Number)

When this property transitions to true (non zero) the scanner will initialize and will
start using the device built-in camera for bar code reading.

scanResult String
(read only)

After a successful scan this property contains a string with the last scanned code.

page: / www.ritecontrol.com60 153

http://www.ritecontrol.com

HMI Editor

7.1.7 $UsersManager
The $UsersManager object provides the interface for presenting a Log In screen for project users. It also provides a set of prop-
erties to determine the currently logged in user and her/his associated access level.
Project Users are created from the Model Browser on the 'Users' section. The $UsersManager is the central controller to man-
age a Log In screen and to retrieve information on the current user.

PROPERTY TYPE DESCRIPTION

login Bool
(read/write
Number)

When this property transitions to true (non zero) the project users login screen
will appear. After an user entered her credentials the remaining (read only)
properties will update accordingly.

enableAutoLogin Bool
(read/write
Number)

When this property is false and users are defined on the current project the Log
In screen will always appear after app startup or device wake up. You can pre-
vent this by setting it to true, the default

adminUserPassword String
(read/write

String)

Specifies the password for the default "admin" user. In View mode, the admin
user gives access to the Application Panel. If your project contains users, you
you should chose an undisclosed password for the admin user. The default
password is "admin"

currentUserName String
(read only)

Contains the user name of the currently logged in user.

currentUserLevel Number
(read only)

Contains the access level of the currently logged in user.
Access levels can be used for the purposes of hiding or enabling interface ele-
ments, giving restricted access to pages, setting limits on input fields or controls
based on user level, and so on.
NOTE: This property is implicitly set to 9 when no Project User is logged in. This
will happen when you log into a HMI Pad Service user. Following the usual con-
vention for user access levels (0..9) this means full access rights to HMI fea-
tures. If this is not desirable or convenient you may set user levels above 9 on
your project in order to provide restricted access to HMI Pad Service users.

backgroundColor Color
(read/write
String or
Number)

The color to be applied as a background for the Log In screen. If no color is pro-
vided or the property is left blank, the system will use a semitransparent blurred
effect partially showing the project contents as a background.
See description of the color property on the page object for a discussion on
possible values.
See also note below on the use of dark/bright or transparent backgrounds col-
ors.

backgroundImage ImagePath
(read/write

String)

Image to be shown as a background on the Log In Screen. If the image contains
transparency, the color or effect specified on the backgroundColor property will
still show underneath. The image will automatically scale to the screen size us-
ing an Aspect Fit mode.

page: / www.ritecontrol.com61 153

http://www.ritecontrol.com

HMI Editor

Transferring project users to the HMI Pad Service.
Project users are transferred along with your project when you upload it to the HMI Pad Service. However no login information is
kept on the HMI Pad Service.
An user with username "admin" is implicitly available as long as you created at least one user. When you log into an user while
in view mode, the Application Panel is not available, particularly on HMI. This allows you to create a closed application that will
run only your project.
By convention, every time a project is downloaded from the server the app will start with the implicit admin user logged in. The
same applies when projects are redeemed or updated on the HMI app.
Only the admin user is allowed to redeem or update projects on HMI. However, once a project user is logged in, the app pre-
vents further access to the Application panel and thus no integrator server related options are available.
To gain access to the Application panel and full app features in HMI you must log into the admin user. Therefore, it is important
that the password associated with the admin user is only known for those who are responsible of project updates or the mana-
gement of projects in HMI.
For more information about users and user accounts refer to the HMI Pad Deployment Guide

companyTitle String
(read/write)

A title to be presented on the Log In screen. This can be your company name or
a text identifying your project. Short titles of no more than 12 or so characters
work well on this property.

companyLogo ImagePath
(read/write

String)

Image to be shown next to the companyTitle on the Log In screen. The present-
ed image will not be scaled on any way, so it must have already the right size.
Recommended size is about 200 pixels wide and 40 pixels height for non-retina
displays (iPad 2) and 400x80 for retina displays.
A default image will be shown if you leave this field empty. If you want to remove
the default image pass a string containing a single space to this property.

NOTE: Some text displayed on the Log In screen will be drawn in White or in a Dark Grey color depending on the specified
backgroundColor. See note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com62 153

http://www.ritecontrol.com

HMI Editor

7.2 Page Object
You can place visual items on a pages. Pages themselves have their own properties.

PROPERTY TYPE DESCRIPTION

pageIdentifier (constant
String)

String identifying the page for the purposes of programatic page navigation.
Adding unique texts to this property on different pages is the basis for program-
matic page navigation.
You can cause a page switch by setting a particular page identifier to the $Projec-
t.currentPageIdentifer property through expressions, or by entering page identifiers
on the linkToPage or linkToPages properties of Buttons, Segmented Controls or Ar-
ray Pickers.

title (constant
String)

Shown at the center of the project viewer toolbar when this page is the visible one.

shortTitle (constant
String)

Shown below the page thumbnail on the Page Navigator panel

modalStyle (constant
Number)

Identifies whether the page should behave modally. Pages with this property set to
'Modal' will always animate in and out taking into account its own transitionStyle.
Otherwise page transitions will be automatically animated with the transitionStyle
of the in or out page accounting for the actual order of pages in the Page Naviga-
tor

page: / www.ritecontrol.com63 153

http://www.ritecontrol.com

HMI Editor

pageTransition-
Style

(constant
Number)

Identifies the transition style applicable to the page. Possible values are: None,
Fade, Curl, Shift Horizontal, Shift Vertical and Flip.

enabledInterfaceI-
diom

(constant
Number)

Determines which interface idioms this page will be available for. Possible values
are iPad & iPhone, iPad, iPhone.
When setting this property to only one family of devices, such as iPhone, you pre-
vent this page to appear on the page navigator for other device families.

color Color
(read/write
String or
Number

A color to be applied to the page.
Colors can be given as a text string identifying the color by name as listed in http://
www.w3schools.com/cssref/css_colornames.asp.or given as RGBA coordinates in
one of the forms "#RRGGBB", "#RRGGBB/AA".
Possible color names are available through the Model Seeker. Tap on the loupe
next to the property and then select 'Color List' for a list of colors.
Colors can be also be given as a Number resulting from the SM.Color() system
method.

image ImagePath
(read/write

String)

Image to be shown as a background on the page. If the image is or contains
transparency, the color specified on the color property will still show underneath.

aspectRatio (constant
Number)

Aspect ratio to be applied to the image. The aspect ratio determines how the im-
age is resized and scaled when the size of its container changes. Possible Values
are:
• None: Centers the image in its container bounds, keeping the original size and
proportions.

• Aspect Fill: Scales the image to fill the size its container. Some portion of the
image will be clipped to fill its container bounds

• Aspect Fit: Scales the image to fit the size of its container by maintaining the
aspect ratio. Any remaining area of the container bounds is transparent.

• Scale to Fill: Scales the content to fit the size of itself by changing the aspect
ratio of the content if necessary.

hidden Bool
(read/write
Number)

When zero (or false) the page thumbnail is visible on the page navigator. This is
the default. Otherwise the page will not appear on the page navigator when the
app is in view mode. Hiding pages enable you to prevent end users from moving
to a particular page -or all of them- except through your own page flow implemen-
tation.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com64 153

http://www.w3schools.com/cssref/css_colornames.asp
http://www.ritecontrol.com

HMI Editor

7.3 Interface Objects
In this section we cover Items with a visual component that can be placed on pages

page: / www.ritecontrol.com65 153

http://www.ritecontrol.com

HMI Editor

Visual Items placed on Pages have the following properties:

PROPERTY TYPE DESCRIPTION

framePortrait (constant
Rect)

A Rect with the coordinates of the item on screen.when the interface is in portrait
orientation The (x, y) are the top left point coordinates and (width, height) are what
they imply expressed in points.

frameLandscape (constant
Rect)

A Rect representing the coordinates of the item on screen.when the interface is in
landscape orientation.

backgroundColor Color
(read/write
String or
Number)

The color to be applied as a background for the item.
See description of the color property on the page object for a discussion on possi-
ble values.
See note below on the use of dark/bright or transparent backgrounds on some ob-
jects.

hidden Bool
(read/write
Number)

When zero (or false) the item is shown and visible on the page. Otherwise it is
hidden.

NOTE:
Some visual Items use the brightness of the color specified on backgroundColor to modify or select the color that is used to
draw certain elements. For example a trend indicator will draw times in black or in white line depending on the brightness of
its background. White text will be drawn for dark backgrounds, and black text will be drawn for bright backgrounds. This is
also applicable to transparent backgrounds if "ClearWhite" or "ClearBlack" is set as backgroundColor

page: / www.ritecontrol.com66 153

http://www.ritecontrol.com

HMI Editor

7.3.2 Controls
Control items are visual objects you place on pages that can be operated by users. They all have the following properties.

PROPERTY TYPE DESCRIPTION

continuousValue Any
(read only

Value)

This property contains the same value of the value property, however the con-
tinuousValue property tracks user action as it happens and before the value.is
actually updated. For example when an user slides a slider control, the continu-
osValue property will continuously reflect the position of the slider, while the val-
ue property will be updated on release of the slider.
The continuousValue can be used in combination with verificationText to catch
undesired user actions or ask for confirmation before the control value actually
changes.

enabled Bool
(read/write
Number)

When false (the default is true) the control will be disabled for user action. When
a control is disabled its value can still be changed through expressions but user
action on it is ignored or disabled.

verificationText String
(read/write

String)

You can provide a verification text can to ask for confirmation before an user ac-
tion is accepted. Controls will display a Confirmation Alert with a Verification Text
if specified.
Example:
"Are you Sure?"

With conditional expressions you can check against the continuousValue prop-
erty to provide appropriate messages or to implement conditional verification of
values.
For example consider the following
mySetPointControl.continuousValue>80?"This can be dangerous, are you sure?":""

in this case a Verification Alert will only be presented for values above 80. If
dismissed, the value will remain the previous one and no change event will be
sent.

active Bool
(read/write
Number)

When this property is false user interaction will be disabled for this control. For
some controls appearance is also changed to a flatter style.

page: / www.ritecontrol.com67 153

http://www.ritecontrol.com

HMI Editor

7.3.2.1 Input Fields
The following properties are common on several visual Items that present text or are related with text.

PROPERTY TYPE DESCRIPTION

textAlignment (constant
Number)

Horizontal alignment of text. Possible values are Left, Center and Right

verticalTextAlign-
ment

(constant
Number)

Vertical alignment of text. Possible values are Top, Middle and Bottom

page: / www.ritecontrol.com68 153

http://www.ritecontrol.com

HMI Editor

fontColor Color
(read/write
String or-
Number)

Color of the Font for this Item. See description of the color property on the page
object for a discussion on possible values.

font FontName
(read/write

String)

A String with a Typography Font name. Possible font names are available through
the Model Seeker. Tap on the loupe next to the property and then select 'Font
Picker' for a list of fonts.
Example:
"Helvetica"

fontSize Double
(read/write
Number)

A Number representing the font size.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com69 153

http://www.ritecontrol.com

HMI Editor

7.3.2.1.1 Text Field
A control item providing the interface for entering a text on a field.

PROPERTY TYPE DESCRIPTION

value String
(read/write

String)

The String representing the text displayed or entered by the user

style (constant
Number)

A style for the control. Possible values are Plain and Bezel

secureInput Bool
(constant
Number)

Identifies whether the text object should hide the text being entered. Useful for en-
tering passwords or data that should not be left immediately visible.

format FormatString
(read/write

String)

A format String for the text displayed by the control. Format strings entered here
must apply to strings. See format specifiers and the format function for a complete
discussion on possible values.

page: / www.ritecontrol.com70 153

http://www.ritecontrol.com

HMI Editor

7.3.2.1.2 Numeric Field
A control item providing the interface for entering a number on a text field..

PROPERTY TYPE DESCRIPTION

value Double
(read/write
Number)

The Number that is displayed by the control.

style (constant
Number)

A style for the control. Possible values are Plain and Bezel

secureInput Bool
(constant
Number)

Identifies whether the text object should hide the text being entered. Useful for en-
tering passwords or data that should not be left immediately visible.

format FormatString
(read/write

String)

A format String for the value displayed by the control. Format strings entered here
should apply to numeric data representations. See format specifiers and the for-
mat function for a complete discussion on possible values.
Example: "%1.2f"

minValue Double
(read/write
Number)

The minimum admissible value on user input. An entry of a value below this will be
set to the minimum.

maxValue Double
(read/write
Number)

The maximum admissible value on user input. An entry of a value above this will
be set to the maximum.

page: / www.ritecontrol.com71 153

http://www.ritecontrol.com

HMI Editor

7.3.2.2 Button
A control providing the interface of a button.

PROPERTY TYPE DESCRIPTION

style (constant
Number)

A style for the button control. Possible values are:
• Normal Button: Normal behavior of a regular button. The button value is 1 as it
is pressed (down) and returns to 0 when released.

• Toggle Button: The button switches its previous state just like a switch control.
Particularly, the button goes to 0 (released) if it was pressed. Or the button goes
to 1 (pressed) if it was released. The actual action occurs on the touch up ges-
ture of the user on the button.

• Touch Up Button: The button quickly goes to 1 and then to 0 upon user tap. The
actual action occurs on the touch up gesture of the user on the button.

value Bool
(read/write
Number)

The current value (0 or 1) of the button.

color Color
(read/write
String or
Number)

A color applied to the button control. See description of the color property on the
page object for a discussion on possible values.

title String
(read/write

String

The text title that will show in the button.

page: / www.ritecontrol.com72 153

http://www.ritecontrol.com

HMI Editor

image ImagePath
(read/write

String)

Image to show for the button.
Note that since this is a writable property you can use expressions to perform any
custom image change depending on button properties or others.

aspectRatio (constant
Number)

Aspect ratio to be applied to the button image. See description of the aspectRatio
property for the page object for detailed information on possible values.

linkToPage String
(read/write

String)

Any non empty string matching a page pageIdentifier will cause a page switch to
the referring page upon button touch. Page switch will be made on the onset of
the 1 state of the button, thus the Touch Up Button button style is recommended to
mimic the standard behavior of iOS touch buttons.
Example: "PageOne"

Upon tapping on the button the interface will switch to a page with identifier "Pa-
geOne".

linkToProject String
(read/write

String)

Any non empty string matching a Project Name will cause a project switch to the
referring Project upon button touch. Project switch will be made on the onset of the
1 state of the button, thus the Touch Up Button button style is recommended to
mimic the standard behavior of iOS touch buttons.
Note: Button Style property has to be set to Normal Button for linkToProject to
work.
Example: “Example-Chart-1“

Upon tapping on the button the interface will switch to a Project with name “Exam-
ple-Chart-1".

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com73 153

http://www.ritecontrol.com

HMI Editor

7.3.2.3 Switch
Properties common to switch controls

7.3.2.3.1 Styled Switch
A control providing the interface of a regular switch.

PROPERTY TYPE DESCRIPTION

value Bool
(read/write
Number)

The current value (0 or 1) of the switch.

PROPERTY TYPE DESCRIPTION

style (constant
Number)

A style for the switch control. Possible values are Apple Style and Button Style.
An Apple Style button looks and behaves as a regular iOS Switch. A Button Style
switch looks like a button with two states

color Color
(read/write
String or
Number)

The color of the switch control. See description of the color property on the page
object for a discussion on possible values.

page: / www.ritecontrol.com74 153

http://www.ritecontrol.com

HMI Editor

7.3.2.3.2 Custom Switch
A control providing the interface of a Switch made of custom images.

PROPERTY TYPE DESCRIPTION

imageOn ImagePath
(read/write

String)

Image to show for the 'On' state of the control.

aspectRatioOn (constant
Number)

Aspect ratio to be applied to the 'On' image. See description of the aspectRatio
property for the page object for detailed information on possible values.

imageOff ImagePath
(read/write

String)

Image to show for the 'Off' state of the control.

aspectRatioOff (constant
Number)

Aspect ratio to be applied to the 'Off' image. See description of the aspectRatio
property for the page object for detailed information on possible values.

page: / www.ritecontrol.com75 153

http://www.ritecontrol.com

HMI Editor

7.3.2.4 Segmented Control
An object providing the interface for a segmented control.

PROPERTY TYPE DESCRIPTION

value Integer
(read/write
Number)

The index of the currently selected segment starting with 0 and going left to right

array Array
(read/write

Array)

An array containing Strings or other data types. The number of elements in the
array determine the number of segments on the segmented control.
Array elements are displayed as text titles on segments.
Example: ["One","Two","Three"]

format FormatString
(read/write

String)

A format String for text titles on segments. Format strings entered here must apply
to numeric data representations. See format specifiers and the format function for
a complete discussion on possible values.
Example: "Segment %s"

color Color
(read/write
String or
Number)

The color of the segmented control. See description of the color property on the
page object for a discussion on possible values.

page: / www.ritecontrol.com76 153

http://www.ritecontrol.com

HMI Editor

linkToPages Array
(read/write

Array)

An array of strings matching page pageIdentifier. Any change on the segmented
control value will cause the interface to switch to the page matching the identifier
at the value index.
Example: ["PageOne","PageTwo","PageThree"]

Upon tapping on the first segment (the value property is 0) the interface will switch
to page with identifier "PageOne" and so on.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com77 153

http://www.ritecontrol.com

HMI Editor

7.3.2.5 Slider
An object providing the interface of a slider control.

PROPERTY TYPE DESCRIPTION

orientation (constant
Number)

The orientation of the slider control. Possible values are Horizontal and Vertical

value Double
(read/write
Number)

The current value of the slider control

color Color
(read/write
String or
Number)

The color of the slider control. See description of the color property on the page
object for a discussion on possible values.

minValue Double
(read/write
Number)

The minimum value of the range presented by the control.

maxValue Double
(read/write
Number)

The maximum value of the range presented by the control.

format FormatString
(read/write

String)

This property is currently unused/reserved

page: / www.ritecontrol.com78 153

http://www.ritecontrol.com

HMI Editor

7.3.2.6 Knob Control
A control providing the interface of a rotary knob.

PROPERTY TYPE DESCRIPTION

style (constant
Number)

This property is currently unused/reserved

thumbStyle (constant
Number)

A style for the thumb element of the knob control control. Possible values are
Segment and Thumb.

value Double
(read/write
Number)

The current value of the knob control

minValue Double
(read/write
Number)

The minimum value of the range presented by the control.

maxValue Double
(read/write
Number)

The maximum value of the range presented by the control.

majorTickInterval Double
(read/write
Number)

The value interval between major ticks. For example for a knob control ranging
from 0 to 100 you could set majorTickInterval to 20 to space each tick by 20 units.
If majorTickInterval is set to 0 (zero) no ticks will be drawn.

minorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks that must be displayed between major ticks. If minor-
TicksPerInterval is set to 0 no minor ticks will be drawn.

page: / www.ritecontrol.com79 153

http://www.ritecontrol.com

HMI Editor

format FormatString
(read/write

String)

The format string to be applied to the interval values that presented next to major
tick intervals.

label String
(read/write

String

An optional text label that will show in the control.

tintColor Color
(read/write
String or
Number)

A tint color to apply to the control. See description of the color property on the
page object for a discussion on possible values.

thumbColor Color
(read/write
String or
Number)

A color to apply to the thumb element of the control. See a description of the color
property on the page object for a discussion on possible values.

borderColor Color
(read/write
String or
Number)

The color of the border of the control. See description of the color property on the
page object for a discussion on possible values.

NOTE: Tick lines and interval values texts will be drawn in White or in Black color depending on the specified background-
Color. See note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com80 153

http://www.ritecontrol.com

HMI Editor

7.3.2.7 Array Picker
A control providing the interface for selecting an array element.

PROPERTY TYPE DESCRIPTION

index Integer
(read/write
Number)

The index of the currently selected element on the array starting with 0

element Any
(read only)

The currently selected element in the array.

array (read/write
Array)

An array containing Strings or other data types. The elements in the array deter-
mine the available options for selection using this control.
Array elements are displayed as text on a list that pops up on taping the control.
The selected element is displayed as a text label in the control.
Example: ["One","Two","Three"]

format FormatString
(read/write

String)

A format String for texts on the pop up list and the text label displayed by the con-
trol. See format specifiers and the format function for a complete discussion on
possible values.
Example: "Option %s"

page: / www.ritecontrol.com81 153

http://www.ritecontrol.com

HMI Editor

color Color
(read/write
String or
Number)

The color of the array picker control. See description of the color property on the
page object for a discussion on possible values.

linkToPages Array
(read/write

Array)

An array of strings matching page pageIdentifier. Any change on the array picker
value will cause the interface to switch to the page matching the identifier at the
value index.
Example: ["PageOne","PageTwo","PageThree"]

Upon selecting the first segment (the value property is 0) the interface will switch
to page with identifier "PageOne" and so on.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com82 153

http://www.ritecontrol.com

HMI Editor

7.3.2.8 Dictionary Picker
A control providing the interface for selecting an entry in a dictionary.

PROPERTY TYPE DESCRIPTION

key Any
(read/write

Value)

The key of the currently selected entry in the dictionary

value (read only
Value)

The value associated with the selected key in the dictionary

dictionary (read/write
Dictionary)

A dictionary containing key:value pairs. The entries in the dictionary determine the
available options for selection using this control.
Dictionary keys are displayed as text on a list that pops up on taping the control.
The value associated with the selected key is displayed as a text label in the con-
trol.
Example: {"Second":2, "Third":3, "First":1}

format FormatString
(read/write

String)

A format String for the text label displayed by the control. This format applies to
the value on display associated with the selected key. See format specifiers and
the format function for a complete discussion on possible values.
Example: "Value %s"

color Color
(read/write
String or
Number)

The color of the dictionary picker control. See description of the color property on
the page object for a discussion on possible values.

page: / www.ritecontrol.com83 153

http://www.ritecontrol.com

HMI Editor

7.3.2.9 Tap Gesture Recognizer
An control providing the interface for a tap gesture recognizer

PROPERTY TYPE DESCRIPTION

tap (read only
Number)

The recognized status of the control. This value is 0 on stand-and goes to 1 to in-
dicate that a tap gesture on the control has just been recognized.
The behavior is similar to a Touch UP style button. When a tap gesture is recog-
nized the property value goes to 1 for an instant and then quickly returns to 0.

numberOfTaps Integer
(constant
Number)

The number of taps for the gesture to be recognized. This means how many taps
the user needs to perform on the control to trigger an action. For instance set this
to 2 to implement a control requiring a double tap to perform an action.

numberOfTouches Integer
(constant
Number)

The number of fingers required to tap for the gesture to be recognized. For in-
stance set this to 2 to implement a control requiring a two-fingers tap to perform
an action.

page: / www.ritecontrol.com84 153

http://www.ritecontrol.com

HMI Editor

7.3.3 Indicators
Indicators are visual objects on pages designed to present information in specific ways.

7.3.3.1 Label
An indicator item providing the interface for displaying a text label.

PROPERTY TYPE DESCRIPTION

value Any
(read/write

Value)

The value displayed by the control.

format FormatString
(read/write

String)

A format String for the value displayed by the control. Format strings entered here
apply to the actual type of the value. See format specifiers and the format function
for a complete discussion on possible values.

page: / www.ritecontrol.com85 153

http://www.ritecontrol.com

HMI Editor

7.3.3.2 Bar Level
An Indicator presenting a numeric value as a dynamic bar.

PROPERTY TYPE DESCRIPTION

direction (constant
Number)

The direction of the bar control for forward value changes. Possible values are
Left, Up, Right, and Down

value Double
(read/write
Number)

The current value of the bar level indicator

barColor Color
(read/write
String or
Number)

The color of the bar. See description of the color property on the page object for a
discussion on possible values.

tintColor Color
(read/write
String or
Number)

The color of the area below the bar. See description of the color property on the
page object for a discussion on possible values.

borderColor Color
(read/write
String or
Number)

The color of the border line. See description of the color property on the page ob-
ject for a discussion on possible values.

minValue Double
(read/write
Number)

The minimum value of the range presented by the indicator.

page: / www.ritecontrol.com86 153

http://www.ritecontrol.com

HMI Editor

maxValue Double
(read/write
Number)

The maximum value of the range presented by the indicator.

format FormatString
(read/write

String)

A format String for the value displayed by the control next to the bar. Set this to an
empty string if no text must be displayed. Format strings entered here apply to the
actual type of the value. See format specifiers and the format function for a com-
plete discussion on possible values.

NOTE: The displayed text value will be drawn in White or in Black color depending on the specified backgroundColor. See
note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com87 153

http://www.ritecontrol.com

HMI Editor

7.3.3.3 Range Indicator
An advanced Indicator presenting a numeric value such as a set point in the context of several ranges. Also called a High Per-
formance Indicator.

PROPERTY TYPE DESCRIPTION

direction (constant
Number)

The direction of the bar control for forward value changes. Possible values are
Left, Up, Right, and Down

value Double
(read/write
Number)

The presented current value of the range indicator

minValue Double
(read/write
Number)

The minimum value of the total range presented by the indicator.

maxValue Double
(read/write
Number)

The maximum value of the total range presented by the indicator.

format FormatString
(read/write

String)

A format String for the text value displayed by the control next to the range bars.
Set this to an empty string if no text must be displayed. Format strings entered
here apply to the actual type of the value. See format specifiers and the format
function for a complete discussion on possible values.

tintColor Color
(read/write
String or
Number)

The color of the area below the range bars. See description of the color property
on the page object for a discussion on possible values.

page: / www.ritecontrol.com88 153

http://www.ritecontrol.com

HMI Editor

needleColor Color
(read/write
String or
Number)

The color of the triangular needle representing current value of the indicator. See
description of the color property on the page object for a discussion on possible
values.

borderColor Color
(read/write
String or
Number)

The color of the border line. See description of the color property on the page ob-
ject for a discussion on possible values.

ranges Array of
Ranges

(read/write)

An array containing ranges. Ranges as presented as colored bars.
Example: [0..15, 85..100]

rangeColors Array of Col-
ors

(read/write)

An array containing colors. The size of the rangeColors should match the size of
ranges. If rangeColors is shorter than ranges, default colors will be applied, if it is
larger the excess colors will be ignored.

NOTE: The displayed text value will be drawn in White or in Black color depending on the specified backgroundColor. See
note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com89 153

http://www.ritecontrol.com

HMI Editor

7.3.3.4 Data Presenter
A Data Presenter allows you to present historical data from a SQLite database. Databases on HMI Pad are created with the
Data Logger object (see section Historical data and Data Logger objects and the Data Logger object for more information).
Data can be presented as it is being generated on a real time basis, or can be picked from any time in the past.
The following properties are available to objects acting as data presenters.

PROPERTY TYPE DESCRIPTION

databaseTimeRange (constant
Number)

Provides the time range for the database. For possible values see description of
the same property name for the data logger object.

databaseName (constant
String)

The base name for the SQLite database file associated with this object. See de-
scription for the same property name on the data logger object.

referenceTime Absolute
Time

(read/write)

Provides a reference time to search for the appropriately named database file to
use. The object will attempt to open a database with the file name implicit on
databaseName property composed with the databaseTimeRange and refer-
enceTime properties.

TO DO

databaseFile (read only
String

Contains the full database file name that is currently being updated by this data
logger.

TO DO

page: / www.ritecontrol.com90 153

http://www.ritecontrol.com

HMI Editor

7.3.3.4.1 Trend
An Indicator providing the interface for a time based trend for presenting real time data.

PROPERTY TYPE DESCRIPTION

style (constant
Number)

This property is currently unused/reserved

updatingStyle (constant
Number)

The updating style for the trend indicator. Possible values are:
• Continuous: The trend moves smoothly. Note that this is very CPU intensive,
-specially for big sized trends- and may drain your battery faster than usual.

• Discrete: The trend moves or updates every half a second.

options Dictionary
(read/write

An options dictionary. Supported keys are:
• colorFills: Contains an array of colors to decorate plots by drawing a gradient
below their lines.

plotInterval Double
(read/write
Number)

The number of seconds -or time interval-. plots are visible on the trend. As time
passes plots move from right to left. A negative plotInterval value will cause the
trend to move in reverse direction.

intervalOffset Double
(read/write
Number)

The time offset for the trend window presenting plots. A value or zero means real
time updates. A positive value fixes the trend window in the past by intervalOffset
seconds.

page: / www.ritecontrol.com91 153

http://www.ritecontrol.com

HMI Editor

yMin Double
(read/write
Number)

Minimum value on the vertical axis range.

yMax Double
(read/write
Number)

Maximum value on the vertical axis range.

xMajorTickInterval Double
(read/write
Number)

The time interval between major ticks for the horizontal -time- axis. If xMajorTick-
Interval is set to 0 (zero) no ticks will be drawn.

xMinorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks drawn between major ticks on the horizontal axis. If
xMinorTicksPerInterval is set to 0 no minor ticks will be drawn.

yMajorTickInterval Double
(read/write
Number)

The value interval between major ticks for the vertical axis. If yMajorTickInterval is
set to 0 (zero) no ticks will be drawn.

yMinorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks drawn between major ticks on the vertical axis. If yMi-
norTicksPerInterval is set to 0 no minor ticks will be drawn.

tintColor Color
(read/write
String or
Number)

A color to apply to the time window of the trend. See description of the color prop-
erty on the page object for a discussion on possible values.

borderColor Color
(read/write
String or
Number)

The color of the border of the trend indicator. See description of the color property
on the page object for a discussion on possible values.

plots Array of
Numbers

(read/write)

An array containing the real time values of the plot lines. The number of elements
in the array identifies the number of plot lines drawn.
Example : [source.tag1, source.tag2]

colors Array of
Colors

(read/write)

An array containing colors. The size of the colors should match the size of plots. If
colors is shorter than plots, default colors will be applied, if it is larger the excess
colors will be ignored.

NOTE: Tick lines and time texts will be drawn in White or in Black color depending on the specified backgroundColor. See
note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com92 153

http://www.ritecontrol.com

HMI Editor

Performance Considerations when using trends
PLC communications. Because trends follow value changes at all times, any PLC tags that ultimately are directly or indirectly
involved in trends are continuously polled in order to keep consistence. Also, HMI Editor may continue polling tags while running
in the background. Thus, special care should be taken when deciding what tags will be involved in trending. Particularly, it is re-
commended to setup tags involved in trends as contiguous as possible. Observing this recommendation will lead to shorter
communication patterns and less network overhead, ultimately improving the end user experience.
Graphic rendering on screen. Setting the updatingStyle property to continuous may also lead to some performance degradation
due to increased graphic rendering pressure, specially on devices with lower GPU or CPU specs such as iPods or earlier gene-
ration iPads. It is recommended to check your project on the real field before setting trend updating to continuous. Even if per-
formance looks fine, the extra required rendering cycles will decrease battery life compared with the discrete setting. So this is
also something that bust be balanced.

page: / www.ritecontrol.com93 153

http://www.ritecontrol.com

HMI Editor

7.3.3.5 Chart
An Indicator providing the interface for presenting an array of values on a chart .

PROPERTY TYPE DESCRIPTION

style (constant
Number)

This property is currently unused/reserved

updatingStyle (constant
Number)

This property is currently unused/reserved

charType (constant
Number)

Indicates the type of chart. Possible values are:
• Line: Will displays plot regions as lines.
• Bar: Will display plot regions as bars.
• Mixed: Points for the first region will be displayed as a line, the rest as bars.

options Dictionary
(read/write

An options dictionary. Supported keys are:
• colorFills: Contains an array of colors to decorate plots by drawing a gradient
below their lines.

• pointSymbols: An array of boolean numbers indicating whether circular point
symbols should be drawn to decorate plot values when the chartType is 'Line'. By
default point symbols are drawn.

yMin Double
(read/write
Number)

Minimum value on the vertical axis range.

yMax Double
(read/write
Number)

Maximum value on the vertical axis range.

xFirstTick Double
(read/write
Number)

First numeric value for labels on the horizontal axis range. Label numbers are in-
cremented by one for each new value.
Alternatively, you can specify custom label texts on the labels property.

xMajorTickInterval Double
(read/write
Number)

The interval between major ticks for the horizontal -time- axis. If xMajorTickInterval
is set to 0 (zero) no ticks will be drawn.

xMinorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks drawn between major ticks on the horizontal axis. If
xMinorTicksPerInterval is set to 0 no minor ticks will be drawn.

yMajorTickInterval Double
(read/write
Number)

The value interval between major ticks for the vertical axis. If yMajorTickInterval is
set to 0 (zero) no ticks will be drawn.

page: / www.ritecontrol.com94 153

http://www.ritecontrol.com

HMI Editor

yMinorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks drawn between major ticks on the vertical axis. If yMi-
norTicksPerInterval is set to 0 no minor ticks will be drawn.

tintColor Color
(read/write
String or
Number)

A color to apply to the time window of the chart. See description of the color prop-
erty on the page object for a discussion on possible values.

borderColor Color
(read/write
String or
Number)

The color of the border of the chart indicator. See description of the color property
on the page object for a discussion on possible values.

format FormatString
(read/write

String)

A format String for numbers displayed below bars or data points on the horizontal
axis. Set this to an empty string if nothing must be displayed. See format speci-
fiers and the format function for a complete discussion on possible values.

labels Array of
Strings

(read/write)

An array of strings to be displayed below bars or data points on the horizontal
axis. This optional, if you leave it blank numbers starting at xFirstTick and counting
by xMajorTickInterval will the shown instead.
Example : ["January", "February", "March", "April"]

colors Array of
Colors

(read/write)

An array containing colors. The size of the colors should match the size of plots. If
colors is shorter than plots, default colors will be applied, if it is larger the excess
colors will be ignored.
Example : ["green", "orange"]

regions Array of Ar-
ray or Num-

bers
(read/write)

An array containing value regions to be plotted. Each region consists of an array
of numeric values. Regions will be displayed on separate plots depending on the
Example : [[source.tag1, source.tag2, source.tag3, source.tag4],[20,30,40,50]]
This example will display two plot regions with 4 points each. The fist region is
made of PLC values, the second region is made of constant numeric values.

NOTE: Tick lines and label texts will be drawn in White or in Black color depending on the specified backgroundColor. See
note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com95 153

http://www.ritecontrol.com

HMI Editor

7.3.3.6 Scale
An Indicator providing the interface for presenting a drawing of a lineal scale.

PROPERTY TYPE DESCRIPTION

orientation (constant
Number)

The direction of the bar control for forward value changes. Possible values are
Left, Top, Right, and Bottom

minValue Double
(read/write
Number)

Minimum value of the scale indicator.

maxValue Double
(read/write
Number)

Maximum value of the scale indicator

majorTickInterval Double
(read/write
Number)

The value interval between major ticks for the scale indicator.

minorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks drawn between major ticks.

format FormatString
(read/write

String)

The format string to be applied to the interval values presented next to major tick
intervals.

page: / www.ritecontrol.com96 153

http://www.ritecontrol.com

HMI Editor

backgroundColor Color
(read/write
String or
Number)

The color of the background of the scale indicator. See description of the color
property on the page object for a discussion on possible values.

NOTE: Tick lines and interval value texts will be drawn in White or in Black color depending on the specified background-
Color. See note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com97 153

http://www.ritecontrol.com

HMI Editor

7.3.3.7 Gauge
An indicator providing the interface of a rotary gauge

PROPERTY TYPE DESCRIPTION

style (constant
Number)

This property is currently unused/reserved

options Dictionary
(read/write

An options dictionary. Supported keys are the following:
• angleRange: Contains a Number representing the angle range in radians for
displacement of the gauge needle. Default is π*3/2 (or 270º) which means a
range covering 3/4 of a circumference.

• deadAnglePosition: Contains a Number representing the center of the dead
angle (unused angle range) for the gauge expressed in radians. Default is -π/2
which means the dead angle is on the bottom (negative vertical axis) of the con-
trol.

value Double
(read/write
Number)

The current value of the gauge indicator

minValue Double
(read/write
Number)

The minimum value of the range presented by the indicator.

maxValue Double
(read/write
Number)

The maximum value of the range presented by the indicator.

page: / www.ritecontrol.com98 153

http://www.ritecontrol.com

HMI Editor

majorTickInterval Double
(read/write
Number)

The value interval between major ticks. For example for a gauge indicator ranging
from 0 to 100 you could set majorTickInterval to 20 to space each tick by 20 units.
If majorTickInterval is set to 0 (zero) no ticks will be drawn.

minorTicksPerIn-
terval

Integer
(read/write
Number)

The number of minor ticks that must be displayed between major ticks. If minor-
TicksPerInterval is set to 0 no minor ticks will be drawn.

format FormatString
(read/write

String)

The format string to be applied to the interval values displayed next to major tick
intervals.

label String
(read/write

String

An optional text label that will show on the indicator.

tintColor Color
(read/write
String or
Number)

A tint color to apply to the indicator. See description of the color property on the
page object for a discussion on possible values.

needleColor Color
(read/write
String or
Number)

A color to apply to the needle element of the control. See a description of the color
property on the page object for a discussion on possible values.

borderColor Color
(read/write
String or
Number)

The color of the border of the control. See description of the color property on the
page object for a discussion on possible values.

ranges (read/write
Array of
Ranges)

An array containing ranges. Ranges as presented as colored segments around
the ticks of the gauge indicator.
Example: [0..15, 85..100]

rangeColors (read/write
Array of Col-

ors)

An array containing colors. The size of the rangeColors should match the size of
ranges. If rangeColors is shorter than ranges, default colors will be applied, if it is
larger the excess colors will be ignored.

NOTE: Tick lines and interval values texts will be drawn in White or in Black color depending on the specified background-
Color. See note on backgroundColor on Item Properties for more information

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com99 153

http://www.ritecontrol.com

HMI Editor

7.3.3.8 Lamp
An indicator for presenting the interface of a led like lamp.

PROPERTY TYPE DESCRIPTION

value Bool
(read/write
Number)

The current value of the lamp indicator. A non zero value (true) will display the in-
dicator energized.

blink Bool
(read/write
Number)

A value indicating whether the indicator should blink when it is energized.

color Color
(read/write
String or
Number)

The color to apply to the indicator See description of the color property on the
page object for a discussion on possible values.

page: / www.ritecontrol.com100 153

http://www.ritecontrol.com

HMI Editor

7.3.3.9 Horizontal Pipe
An indicator for presenting the interface of a horizontal line with custom color.

PROPERTY TYPE DESCRIPTION

color Color
(read/write
String or
Number)

The color to apply to the indicator See description of the color property on the
page object for a discussion on possible values.

page: / www.ritecontrol.com101 153

http://www.ritecontrol.com

HMI Editor

7.3.3.10 Vertical Pipe
An indicator for presenting the interface of a vertical line with custom color.

PROPERTY TYPE DESCRIPTION

color Color
(read/write
String or
Number)

The color to apply to the indicator See description of the color property on the
page object for a discussion on possible values.

page: / www.ritecontrol.com102 153

http://www.ritecontrol.com

HMI Editor

7.3.3.11 Group
Items can be grouped together by enabling multiple selection and choosing 'Group' on the popover menu. A new interface item
will be created that acts as a container of the selected elements.A group of objects is in itself an interface item so it has the ba-
sic properties described in Item Properties. For example an useful property for groups is the hidden property.

page: / www.ritecontrol.com103 153

http://www.ritecontrol.com

HMI Editor

7.3.4 Image Objects
Image Objects are Visual Items that are related or cover aspects related with presenting custom images on the interface.

7.3.4.1 Image
An object providing the interface for presenting custom images.

page: / www.ritecontrol.com104 153

http://www.ritecontrol.com

HMI Editor

PROPERTY TYPE DESCRIPTION

aspectRatio (constant Num-
ber)

Aspect ratio to be applied to the image. See description of the aspectRatio
property for the page object for detailed information on possible values.

image ImagePath
(read/write

String or Array)

Image name to show for the object.
You can optionally provide an array of image names to be animated in se-
quence at a rate defined by the animationDuration property.
Animated "gif" files are also supported.

animationDura-
tion

Number
(read/write

String)

The number of seconds to apply between image transitions. For example to
set the animation duration to 100 milliseconds you should enter 0.1 for this
property.

tintColor Color
(read/write String

or Number)

A tint color to apply to the entire image to visually change its appearance. You
can use this property to effectively set a custom color to an image based on
any condition.
Example:
switch.value?"Red":"Green"

this will set the image to "Red" when the switch is on or "Green" otherwise.

page: / www.ritecontrol.com105 153

http://www.ritecontrol.com

HMI Editor

7.3.4.2 Frame Shape
An object providing the interface for presenting custom advanced frames for incorporating into your page designs..

PROPERTY TYPE DESCRIPTION

animate (constant
Number)

This property is currently unused/reserved

fillStyle (constant
Number)

The style used to fill the frame. Possible values are the following:
• Flat Color: The frame will be filled with a single flat color, fillColor1.
• Solid Color: The frame will be filled with a single color, fillColor1, displaying a
very slight gradient.

• Gradient Color: The frame will be filled with a color gradient starting at fillColor1
and ending at fillColor2 and the gradientDirection direction

• Image: The frame will be filled with an image.

strokeStyle (constant
Number)

The style used to stroke the border of the frame. Possible values are the following:
• Line: A continuos line will be used to stroke the frame border.
• Dash: A dashed line will be used to stroke the frame border.

shadowStyle (constant
Number)

The style used to add a shadow to the frame: Possible values are the following:
• None: No shadow will be applied.
• Alpha Channel: Shadow will be applied to the entire frame taking into account
the alpha channel of what is shown in it. This applies as well to images with
transparency to achieve shadow effects in the interior of images.

• Inner Fill: An inner shadow will be applied to the frame..
• Outer Fill: An outer shadow will be applied to the frame..

page: / www.ritecontrol.com106 153

http://www.ritecontrol.com

HMI Editor

gradientDirection (constant
Number)

The direction to be used when drawing gradients. Possible values are Left, Up,
Right, and Bottom.

aspectRatio (constant
Number)

Aspect ratio to be applied to the image if specified. See description of the aspect-
Ratio property for the page object for detailed information on possible values.

fillColor1 Color
(read/write
String or
Number)

A color to fill the frame.

fillColor2 Color
(read/write
String or
Number)

A secondary color to fill the frame when gradient is used.

fillImage ImagePath
(read/write

String)

Image to show for the object in case fillStyle is set to image.

cornerRadius Double
(read/write
Number)

The radius in points for the frame corners.

lineWidth Double
(read/write
Number)

The width in points of the frame border line. A value of 0 prevents a border to be
drawn.

gridColumns Integer
(read/write
Number)

If greater than 1 it will draw evenly spaced vertical lines on the item. Lines will be
drawn using the specified lineWidth, strokeColor and shadow options.

gridRows Integer
(read/write
Number)

If greater than 1 it will draw evenly spaced horizontal lines on the item. Lines will
be drawn using the specified lineWidth, strokeColor and shadow options.

strokeColor Color
(read/write
String or
Number)

A color for the border line.

shadowOffset Double
(read/write
Number)

A vertical offset in points for the shadow if present.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com107 153

http://www.ritecontrol.com

HMI Editor

shadowBlur Double
(read/write
Number)

The amount of blur to apply to the shadow if present.

shadowColor Color
(read/write
String or
Number)

The shadow color.

opacity Double
(read/write
Number)

A value from 0 to 1 indicating a opacity to be applied to the frame object. A value
of 0 means fully transparent, 1 is fully opaque. Any value in the middle will add
transparency to some extent.

blink Bool
(read/write
Number)

A value indicating whether the indicator should blink. Non zero values (true) will
activate blinking for the indicator.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com108 153

http://www.ritecontrol.com

HMI Editor

7.3.5 Web Objects
Web Objects are Visual Items for presenting web content or web related information.

7.3.5.1 Web Browser
An object providing the interface for displaying a web browser.
On the web browser component you can display any content You can present any web related content such as web sites, web
based cameras, or even run a web based SCADA in it.
In addition you can display any content stored on the Assets section such as pdf files, doc documents, text files and more.

PROPERTY TYPE DESCRIPTION

url Url
(read/write

String)

The String assigned to this property provides the full url of a web site.
Alternatively, you can provide custom content previously stored on the Assets sec-
tion such as pdf files. In such case you omit the url schema from the string.
Example : "http://www.google.com"
Example : "http://www.myweb.com/myWebBasedScadaSystem"
Example : "machineManual.pdf"

page: / www.ritecontrol.com109 153

http://www.ritecontrol.com

HMI Editor

7.4 Background Objects
Objects that are not visually presented on pages but intervene on the flow execution of your project are named Background Ob-
jects.

7.4.1 Expression Object
An Expression Object allows you to store intermediate results or to centralize operations in a single place. It also provides an
opportunity to optimize or normalize your project by reducing the need to repeat some subexpressions that otherwise would be
present in several places.
An Expression Object has a single property

PROPERTY TYPE DESCRIPTION

value Any
(read/write

Value)

The expression value.

page: / www.ritecontrol.com110 153

http://www.ritecontrol.com

HMI Editor

7.4.2 Recipe Sheet Object
A Recipe Sheet Object provides the interface for retrieving data from a csv file. In the csv file data is organized in rows repre-
senting recipes, and columns representing ingredients.
On the first column we place recipe names (or numeric keys).
On the first row we enter ingredient names (or keys).
The cell on the first row and column contains an identifier for the entire recipe sheet.
An example of such a csv file is represented below:

Recipe Keys can be strings or numbers. Ingredient keys can be strings or numbers. Recipe ingredient data can be a string or a
number.
The Recipe Sheet object can read the above file in csv format and make it available through its properties. The following proper-
ties are available.

My Recipe Identifier Ingredient 1 Ingredient 2 Ingredient 3

Recipe 1 10 20 300

Recipe 2 40 45 320

Recipe 3 30 35 310

PROPERTY TYPE DESCRIPTION

recipes (read only
Dictionary)

This property provides access to recipes and its ingredient values. It contains a
dictionary of recipes. Valid dictionary keys are available in the recipeKeys. Each
value in this dictionary contains a dictionary of ingredient values accessed through
ingredient keys.
Example: Based on the recipe sheet file above the contents of this property look
as follows:
{"Recipe 1" : {"Ingredient 1":10, "Ingredient 2":20,"Ingredient 3":300},
"Recipe 2" : {"Ingredient 1":40, "Ingredient 2":45,"Ingredient 3":320},
"Recipe 3" : {"Ingredient 1":30, "Ingredient 2":35,"Ingredient 3":310}}

recipeIdent (read only
Number or

String)

Contains the recipe identifier that is present on the first row and column of the as-
sociated recipe sheet file.
Example: Based on the recipe sheet file above the contents of this property look
as follows:
"My Recipe Identifier"

recipeKeys (read only
Array)

Contains an array with all the recipe key entries in the associated recipe sheet file.
You can use this array as is on an array picker object for the purpose of selecting
a recipe.
Example: Based on the recipe sheet file above the contents of this property look
as follows:
["Recipe 1", "Recipe 2", "Recipe 3"]

page: / www.ritecontrol.com111 153

http://www.ritecontrol.com

HMI Editor

ingredientKeys (read only
Array)

Contains an array with all the ingredient key entries in the associated recipe sheet
file.
You can use this array as is on an array picker object for the purpose of selecting
an ingredient.
Example: Based on the recipe sheet file above the contents of this property look
as follows:
["Ingredient 1", "Ingredient 2", "Ingredient 3"]

sheetFilePath Recipe-
SheetPath
(read/write

String)

The String assigned to this property provides the file source of the recipe sheet.
Recipe files are stored on the Assets section if they must not be editable by end
users, in this case just enter the file name. This is an effective way to provide pre-
configured setups to your projects. The file itself should be selected on Assets to
make it available to the project before deployment.
If you want end users to edit or add recipe sheets, you must make them available
on the Database area. To do so you prefix your file name with "databases://".
Alternatively, you can set the stored on the Assets section such as pdf files. In
such case you omit the url schema from the string.
Example : "myRecipesSheet.csv"
Example : "databases://myRecipesSheet.csv"

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com112 153

http://www.ritecontrol.com

HMI Editor

7.4.3 Data Snap Object
A Data Snap object allows you to capture snap shots of data in an efficient way. Particularly, this object can be used to capture
data from a PLC based on a custom trigger -such as the press of a button- instead of the usual connector based polling interval.
For example you may want to efficiently represent a big array of data from a PLC on a chart graph, but not on a chart that is
continuously refreshing, but based on user action. In such case you can link your PLC data to the inputValue of a dataSnap ob-
ject, link a push button to the snap property, and then use the snapValue as the input to a chart object. Provided that the re-
ferred PLC data is only used in the context of this dataSnap object, the system will perform a single PLC read each time an user
taps the button. This is in contrast to having your PLC data directly connected to a chart object where updates will be made real-
time as data changes in the PLC.

PROPERTY TYPE DESCRIPTION

snapValue Any
(read only

Value)

The result (or output) of the snap shot

snap Bool
(read/write

Value)

The trigger of the snap action. When snap transitions to true (non zero) a data
snap of inputValue is performed and moved to snapValue conserving the same
data type and values.
For inputValues that are directly or indirectly linked to PLC tags, the snap shot is
performed by reading PLC data only once before moving the result to the snap-
Value property.

inputValue Any
(read/write

Value)

The source (or input) data for the object.

page: / www.ritecontrol.com113 153

http://www.ritecontrol.com

HMI Editor

7.4.4 On Timer
An On Timer object allows you to implement delays on actions or to program delayed operations. It is similar to a timer.
The On Timer object can be used to allow one operation to complete before another begins, or to require a condition to exist for
a period of time before an alarm is activated.

PROPERTY TYPE DESCRIPTION

delayedValue Bool
(read only

Value)

Output signal for the internal timer as described on the value property.

value Bool
(read/write

Value)

The object value. When value transitions to true (non zero) the internal timer starts
counting, after time has passed delayedValue is activated (set to 1). If value is set
to 0 the internal timer is reset and delayedValue is immediately set to 0.

time Double
(read/write

Value)

The time expressed in seconds.

page: / www.ritecontrol.com114 153

http://www.ritecontrol.com

HMI Editor

7.5 Alarm Objects
Alarm objects are designed to present eventual information on the Alarms Viewer.

When an alarm condition is triggered, alarm information such as their group and comment properties are displayed in an orde-
red list on the Alarms Viewer. Alarms will remain on the list as long as they are active or otherwise if they have not been acknow-
ledged. Their current state is shown by small icons next to the alarm text:

Bright Red Alarm Clock icon means active and not acknowledged

Dark Red Icon means active and acknowledged

Gray Clock Icon means inactive and not acknowledged

Performance Considerations
PLCCommunications. Because alarms do track eventual events at all times, any PLC tags that are ultimately involved in alarms
are continuously polled. Also, HMI Editor may continue polling tags while running in the background. Thus, special care should
be taken when deciding what tags will be reserved for alarms. Particularly, it is recommended to chose tags involved in alarms
to be as contiguous as possible. It is also more efficient to have alarms depending on boolean tags than on scalar values. For
protocols supporting arrays of BOOL, they will be the best choice. Observing this recommendation will lead to shorter communi-
cation patterns and less network overhead, ultimately improving the end user experience.

page: / www.ritecontrol.com115 153

http://www.ritecontrol.com

HMI Editor

7.5.1 Alarm
An alarm object keeps eventual information and appears on the Alarms Viewer when it is first activated.

PROPERTY TYPE DESCRIPTION

active Bool
(read/write
Number)

State of the alarm. Set this to true (non zero) when you want to signal an event
described by this alarm object.
Example: source.alarm1
Example: source.temperature>45

group String
(read/write

String)

The group string that will appear on the Alarms Viewer when this alarm is shown

comment String
(read/write

String)

The comment string that will appear on the Alarms Viewer when this alarm is
shown

playSound (Constant
Number)

The type of sound that the alarm will play. Possible values are Custom Sound
and Default Sound. When a default sound is specified a Horn Alarm sound will
play when the alarm transitions to active.

url Url
(read/write

String)

When playSound is set to Custom Sound the alarm will use the audio asset
specified in this property instead of the default sound. If this property contains an
empty string no audio will play.
See the $Player object for a discussion on the valid contents of the url property for
playing audio files.

page: / www.ritecontrol.com116 153

http://www.ritecontrol.com

HMI Editor

showAlert (Constant
Number)

Possible values are No alert and Show Alert. When the later is selected the alarm
will display an alert message to the user when its state becomes active.

emails String
(read/write

String)

The email Address’ that the alarm will send emails to when it goes true. This can
be set to multiple email address if needed.
Example: “email1@host.com, email2@host.com“

emailSubject String
(read/write

String)

The Subject of the email. Can be combined with expressions to make the email
Subject more useful.
Example: “Water Pressure is: “ + source.waterPressure.to_s + “psi”

Providing the waterPressure value is 5, this would create the Subject: “Water Pressure is:
5psi”

emailBody String
(read/write

String)

The Body of the email. Much Like the emailSubject, the emailBody can contain
Expressions to make it more useful.

emailCoolDown Number
(read/write

Integer)

Email Cool Down specifies the number of minutes between sending emails.
If the cool down is set to 3, the alarm will send an email as soon as the alarm is
triggered. But if the alarm goes to false and then true again within 3 minutes, it
won’t send another email till the 3 minutes have expired.

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com117 153

http://www.ritecontrol.com

HMI Editor

7.6 Users
You can create user accounts on a project basis.
By creating user accounts you can provide restricted or personalized access to selected features on your project. To do so you
must assign a differentiated accessLevel to users. On your project, you use the $UsersManager.currentUserLevel property to
determine the accessLevel of the currently logged in user and enable or disable specific features based on expressions.

7.6.1 User
An User object stores Log In information of a project user account and assigns an accessLevel to it.

PROPERTY TYPE DESCRIPTION

userName (constant
String)

Sets the user name this user will have to enter on the Log In screen

password (constant
String)

Sets the password this user will have to enter on the Log In screen

accessLevel (constant
Number)

Sets the access level for this user. As an accessLevel you can use any numeric
value. The app does not perform any check on the used range.
It is up to you to interpret accessLevels the way that fits best your app needs. An
usual practice is to use numbers ranging from 0 to 9. For example you can disable
features on your project based on levels that at below a particular value.
You determine the currently logged in user access level by watching at the
$UsersManager.currentUserLevel

page: / www.ritecontrol.com118 153

http://www.ritecontrol.com

HMI Editor

7.7 Historical data and Data Logger objects
HMI Pad uses the open source SQLite database format to store historical data. SQLite is convenient and extensively used for
storing large data sets. It comes with built in searching capability and filtering. Databases are stored locally by HMI Editor/View
and can be exported to a desktop computer for further analysis. You will find database files on the Databases section of the HMI
Editor/View application panel.
Several software tools are readily available for opening and extracting data from SQLite files. You can apply filters and convert
data to alternative file formats such as csv files if needed.
On HMI Pad you use data logger objects for data storage, and data presenters for data retrieval.
Data loggers on HMI Pad are linked to physical SQLite database files by specifying a database name and a time range for the
database. See Data Logger object below. Based on databaseName and databaseTimeRange a suitable file name for the data-
base file will be composed. If a database file for a given time period is not present at the time a data logger attempts to store
historical data, a new one will be created.

7.7.1 Data Logger
Data Logger objects provide an interface to store historical data on SQLite databases. Data provided on the values property is
stored in table rows in the SQLite database.

PROPERTY TYPE DESCRIPTION

databaseTimeRange (constant
Number)

Provides the time range for the database. Along with the databaseName it pro-
vides a hint for the actual database file name. Possible values for this property
are Hourly, Daily, Weekly, Monthly, Yearly.
A new database file will automatically be created after the databaseTimeRange
expires. For example 'monthly' based data loggers will create a new database
file per month.
See also the databaseName property description for more information.

databaseName (constant
String)

The base name for the SQLite database file associated with this object.
The actual database file name will be a composition of this property and the
databaseTimeRange.
For example: If you set "MyData" to databaseName and 'Monthly' to database-
TimeRange you will get database file names with the following pattern :"My-
Data_yyyy_mm.db" where 'yyyy_mm' will identify the year and month when the
data was recorded.

databaseFile (read only
String

Contains the full database file name that is currently being updated by this data
logger after composing databaseName with databaseFileRange. This corre-
sponds to the actual database file name on disk.

fieldNames (constant
Array of
Strings)

An array of strings to set database field names for the stored values.
Based on the strings in this array, a database table will be created or updated
with equivalently named table columns.
Upon change of this property, the app will attempt to update the linked data-
base tables with the newly provided names, however any field name which is
replaced by a different one will cause irreversible loss of the previously named
database column.

page: / www.ritecontrol.com119 153

http://www.ritecontrol.com

HMI Editor

values Array of
Numbers

(read/write)

An array containing trend values to store on the database.
The length of the array should match the length of the fieldNames array, but if
no field names are provided or the number of values is greater than the number
of fields then default names based on index will be used for the database table
columns.
Also see note on table insertion below.

NOTE:
Insertion of data in the database file is triggered by changes on the values property, however updates that occurred faster
than 0.5 seconds will be ignored. (This may be user selectable on a future release)

PROPERTY TYPE DESCRIPTION

page: / www.ritecontrol.com120 153

http://www.ritecontrol.com

HMI Editor

7.8 Connector Objects
Connectors represent PLCs. For each PLC you want to communicate with you must create a connector.
Connectors have a list of PLC Tags. For each PLC tag you create on a connector an implicit property with the same name is
added to the connector.
For example if you want to communicate with a particular PLC with 3 tags you create a Connector Object configured as appro-
priated for the PLC, then add to it your 3 tags. If you named your connector myPlc and you named your tags var0, var1, var2
you will be able to refer these tag values anywhere in the app by using myPlc.var0, myPlc.var1, myPlc.var2.
When you create a Connector you must specify its particular type.and set appropriate parameters.
Each tag you create must be configured appropriately by setting its PLC address and data type.
A connector object is created starting from the model browser.

page: / www.ritecontrol.com121 153

http://www.ritecontrol.com

HMI Editor

7.8.1 Supported PLC Connector Types
Upon creation of a connector you must indicate its type. The following connectors for Industrial PLC communications are sup-
ported.

PROTOCOL NAME SUPPORTED PLCs or Brands
(Not exhaustive)

REMARKS

EIP/Native Allen Bradley ControlLogix and
CompactLogix

Native CIP communications using Ethernet/IP explicit messag-
ing

EIP/PCCC Allen Bradley SCL505 and Mi-
crologix controllers, other con-
trollers through 1761-NET-ENI

PCCC commands (DF1) encapsulated in Ethernet/IP.

FINS/TCP Omron CS1, CJ1 and newest For communication with Omron PLCs with ethernet communi-
cation capabilities.

MELSEC/TCP Mitsubishi FX Series For communication with Mitsubishi FX Series PLCs with ether-
net communication capabilities using MC (1E) frames.

Modbus/TCP Schneider Electric, Automation
Direct, Phoenix Contact,
Wago...

For communication with PLCs and RTUs adopting the Modbus/
TCP specification

Modbus over TCP Serial Modbus RTU devices. You can connect to Modbus devices through a simple Ethernet
to Serial gateway.

Opto22/Native Opto22 PAC controllers Native communications protocol for Opto22 PAC controllers

Siemens/ISO_TCP Siemens Simatic S7-1200,
S7-300, S7-400 controllers

RFC 2126, ISO Transport Service on top of TCP for Siemens
Step 7 programmable controllers.

page: / www.ritecontrol.com122 153

http://www.ritecontrol.com

HMI Editor

7.8.2 PLC Connector Parameters
PLC Connectors have the following parameters.

PLC CONNECTOR
PARAMETERS KIND MEANING

Protocol - This is an Implicit property chosen upon connector creation.

Local text Source address in text format for local access (LAN).
Example: 192.168.1.40

Remote text Source address or symbolic DNS host name for remote connections.
Example: myhost.dyndns.org

Local Port number TCP port used for local connections (LAN) to this source. If left blank HMI Editor will
use the standard port for the protocol of the current Connector type. (For example
502 for Modbus.
Example: 502

Remote Port number TCP port used for remote connections to this source (WAN-Internet). If left blank HMI
Editor will use the standard port for the protocol of the current Connector type.
Example: 504

Update Rate number You can specify the desired polling rate for communications expressed in seconds.
The default is 2 seconds.
A value of zero (0) is also possible, this means top speed, i.e. no delay between
reads.
Example: 0.1

page: / www.ritecontrol.com123 153

http://www.ritecontrol.com

HMI Editor

Validation Tag text Allows for using a custom validation tag on protocols supporting it.
• For EIP/NATIVE the validation tag name is always SMValidationTag, it can not be

changed.
• For EIP/PCCC use Nx:y only N files can be used and the code is stored as an INT

(default is N98:0).
• For MODBUS a validation tag is not supported.
• For FINS/TCP use Dx only DM area can be used and the code is stored as a

WORD (default is D19998).
• For MELSEC/TCP use Dx only D area can be used and the code is stored as a

WORD (default is D8085).
• For OPTO22/NATIVE the validation tag name is always an OptoControl Numeric

variable (Integer32) with the tag name SMValidationTag, it can not be changed.
• For SIEMENS/ISO_TCP use MWx; only MW can be used and the code is stored as

a WORD (default is MW998)

Validation Code number
(hex)

Hexadecimal 16 bit value that is queried to the PLC on each connection to prevent
further communication in case of mismatch.
This value must be present in your PLC as a 16 bit hexadecimal value (0 to FFFF)
and must match the value for connections to that PLC to succeed.
See Section The Default Validation Tag below for more information

PLC String Encod-
ing

selection
text

Identifies which String Encoding is used for strings in PLCs. Default is WindowsLatin1
(See International Languages Support)

PLC CONNECTOR
PARAMETERS KIND MEANING

page: / www.ritecontrol.com124 153

http://www.ritecontrol.com

HMI Editor

Additional Parameters for Modbus connectors.
The Modbus specification does not exactly define how the data should be stored in registers or in which order the bytes or
words are sent. The following global attributes help to deal with it. Swapped words/bytes options for modbus are global.

MODBUS PARA-
METERS KIND MEANING

RTU Mode number
(boolean)

HMI will use "Modbus/RTU over TCP" instead of "Modbus/TCP". This will allow for
accessing serial modbus/RTU devices behind an Ethernet-to-serial gateway not
supporting MBAP. Use the 'slave_id' property on tags to route commands to the
right modbus slave node.

Word Swap number
(boolean)

Swaps words for 32 bit data (such as DINT or REAL) before sending to or upon re-
ceiving from a modbus device. Default value is ‘false’.

Byte Swap number
(boolean)

Swaps bytes for 16 or 32 bit data before sending or upon receiving from a modbus
device. Default value is ‘false’.

String Byte Swap number
(boolean)

Swaps bytes for string data before sending or upon receiving from a modbus device.
Default value is ‘false’.

Register Grouping
Limit

number Specifies the maximum number of Registers that will be read at any given time on a
single modbus command. For example, if your controller will not allow any reads of
more than 16 registers on a single command you can set this property to 16.
The default is 0 (zero) meaning no artificial limit. For most controllers you should
leave this property to the default, as this will enable maximum communications per-
formance.

The combined effect for swap parameters is as follows:
Assuming a default of 'ABCD' for byte order where 'A' is the Most Significative Byte (MSB) and 'D' is the the Less Significa-
tive Byte (LSB), you can combine 'word_swap' and 'byte_swap' with the following results:
1- 'word_swap=false, byte_swap=false' will give 'ABCD' for 32 bit values and 'AB' for 16 bit values. 
2- 'word_swap=false, byte_swap=true' will give 'BADC' for 32 bit values and 'BA' for 16 bit values. 
3- 'word_swap=true, byte_swap=false' will give 'CDAB' for 32 bit values and 'AB' for 16 bit values. 
4- 'word_swap=true, byte_swap=true' will give 'DCBA'. for 32 bit values and 'BA' for 16 bit values.:
‘string_byte_swap’ is only attended in combination with the CHAR or STRING data type. It provides a way to swap odd and
even bytes on character strings without affecting behavior for numeric data types.

page: / www.ritecontrol.com125 153

http://www.ritecontrol.com

HMI Editor

Additional Parameters for Allen Bradley connectors.
Allen Bradley ControlLogix controllers can be plugged in any slot on the backplane. Ethernet/IP messages can be sent “connec-
ted” or “unconnected”. The following attributes can be used to determine these characteristics. These are global attributes.

Additional Parameters for Siemens S7 connectors.
For Siemens S7 controllers you can set ‘Controller Slot’ and give an appropriate ‘rack’ and ‘slot’ number

EIP/NATIVE PARA-
METERS KIND MEANING

Controller Slot number Identifies the slot where the Logix controller is located. Default value is 0. It is ig-
nored for EIP/PCCC communications (SLC and Micrologix)

Connected Mode number
(boolean)

When true, HMI Pad will use "connected messaging" instead of the default "un-
connected messaging" for retrieving data from Ethernet/IP enabled PLCs. Look
below for a discussion on what possible effects you might expect. Default value is
‘false’.

HMI Editor supports two EIP mechanisms to send commands to AB PLCs:
(1) For a Micrologix or SLC it will send PCCC commands (DF1) embedded in EIP using a direct path.
(2) For a ControlLogix/CompactLogix it will send native CIP commands using a Backpane, Slot-Number path. The Back-
pane defaults to 1 and the Slot number is given in controller_slot.
HMI Editor uses CIP Explicit Messages to retrieve and send data from/to Ethernet/IP enabled PLCs. Explicit messages can
be sent "unconnected" or "connected". "Connected" messages require a Connection ID which is first asked to the PLC be-
fore sending other messages, while "unconnected" messages identify the specific path to the destination in the same mes-
sage. Connected messaging is generally considered to be more reliable than unconnected because it reserves buffer space
in the PLC for the message, and is therefore less likely to be blocked by other message traffic. However, if the TCP link be-
tween the message originator and the receiver is weak or prone to fail, unconnected messaging may be a better choice.
Wireless spots or carrier networks can easily drop due to lack of coverage or weak signal, in these cases connected mes-
saging communications may take longer to reestablish after a fault, resulting in less overall reliability and more user per-
ceived delays than unconnected messaging. HMI Editor uses unconnected messaging by default, but you can set it to use
connected messaging for a source file by setting the connected_mode attribute to true.

SIEMENS/S7 PARA-
METERS KIND MEANING

Controller Slot number Identifies the rack and slot where the S7 controller is located. Bits 0-4 of this at-
tribute value identify the slot number, while bits 5-7 identify the rack. Default value
is 0.

page: / www.ritecontrol.com126 153

http://www.ritecontrol.com

HMI Editor

7.8.3 Network Settings for local access.
HMI Pad uses wireless TCP/IP technology to connect and to communicate with PLCs. Direct access from a Local Network re-
quires that both devices be in the same subnet. The PLC acts as the communications server and the iOS device is the client.
The following picture shows a typical setup using the recommended industrial wireless hardware, but basically any WiFi router
will do it.

page: / www.ritecontrol.com127 153

http://www.ritecontrol.com

HMI Editor

7.8.3.1 PLC Settings for local access.

1. In case of Omron’s Fins/TCP protocol use
CX-Programmer tool to set a fixed local IP and
Port for the PLC on the ethernet configuration
panel.

2. For EIP/Native protocol and Allen Bradley
controllers use RS-Logix 5000 tool to set a
fixed local IP for the PLC on the ethernet
module properties panel.

3. For EIP/PCCC protocol use Allen Bradley's
RS-Logix 500 tool and set a fixed local IP for
the PLC on the Channel Configuration panel

4. For other PLCs or devices based on the Modbus/TCP protocol, Siemens/ISO_TCP or Mitsubishi's Melssec/TCP consult the
relevant vendor documentation to know how to set ports and addresses.

5. The relevant PLC Connector parameters for local connections are local and local port.

page: / www.ritecontrol.com128 153

http://www.ritecontrol.com

HMI Editor

7.8.4 Network Settings for remote access.
HMI Editor is designed to communicate with PLCs without using dedicated servers or any specific software installed on a PC.
Communications with PLCs are made by using industrial protocol commands.
To establish a remote connection, a GPRS or DSL router is needed at the PLC site, which will act as a bridge between the LAN
(Local Network) where the PLC is physically wired and the WWAN or WAN (Internet) to which a remote iPhone or iPod Touch
will have access to. This figure shows a standard setup.

First determine the LOCAL IP address of the GPRS or ADSL router. PLCs need to know the router address as it is the gateway
to the internet.

1. In case of Omron Fins/TCP copy the router
address in the ‘IP Route Table’ field of the et-
hernet configuration panel for the PLC in CX-
Programmer.

2. For EIP/Native protocol and Allen Bradley controllers use RS-Logix tool to set the fixed local router IP (gateway) on the et-
hernet module properties panel.

3. For EIP/PCCC protocol use Allen Bradley's RS-Logix 500 tool and set the gateway IP on the Channel Configuration panel

iPhone Router PLC
Internet Local Network

WAN IP: myname.dyndns.org LOCAL IP: 192.168.1.40
LOCAL IP: 192.168.1.1

page: / www.ritecontrol.com129 153

http://www.ritecontrol.com

HMI Editor

4. For Modbus/TCP based devices Siemens
S7 or Mitsubishi controllers refer to the ven-
dor’s documentation.

5. Now log into the GPRS or DSL Router and
configure NAT options to set up a bridge bet-
ween the WAN and your PLC local address
and port. Note that the default port number is
44818 for Ethetnet/IP, 502 for Modbus/TCP,
and 9600 for Omron PLCs. Protocol on the
router must be set to TCP/IP. Look at your
router documentation for details.

6. If you have a fixed IP address enter it as
such in the remote parameter of your PLC
Connector in HMI Editor. .

7. If your router access the WAN through a dynamic IP then you must create an account with a dynamic DNS services provider
such as www.dyndns.org, and configure your router to notify of IP changes. In this case, enter in the remote parameter the
name you chose for your dynamic DNS. The remote port number must still be the one configured in the NAT section of your
router.

page: / www.ritecontrol.com130 153

http://www.ritecontrol.com
http://www.dyndns.org

HMI Editor

7.8.5 Network Security.
HMI Editor networking security is based on TCP/IP technology and depends in part on the security features available in the rou-
ter installed at the PLC location.
For local connections through WiFi security is given by the wireless network security protocol in use. WPA and WPA2 with a
strong password is the recommended security protocol.
For remote connections, an iPhone or iPad is able to make use of secure data tunnels by enabling VPN. If your router supports
L2TP/IPSEC or PPTP then you will be able to create this kind of connection. Most medium to high-end DSL or Cable routers
support at least PPTP. VPNs client connections are configured on the iOS device with the General Settings App.
For most protocols, HMI Editor provides an independent way to protect users from undesired access of persons using uncontro-
lled HMI Editor or ScadaMobile copies. This is done by setting a Validation Code both in the PLCs and HMI Editor which will
prevent the app to access PLCs unless both codes match. Next section describes validation codes and how you can set
them.up.
Finally, physical access can compromise security. It is relatively easy for an unauthorized user to gather physical access to a
device and run a remote monitoring application. To fight this possibility, HMI Editor user accounts provide password based secu-
rity. You can set the 'automatic login' switch off in the HMI Editor or HMI settings tab, and a password key will be asked each
time the app is launched, thus preventing unauthorized people from using the app. Additionally Apple provides a service for
blocking lost or stolen devices so that no one is able to access to data or execute apps in them until the real owner reactivates
them.

page: / www.ritecontrol.com131 153

http://www.ritecontrol.com

HMI Editor

7.8.6 The Default Validation Tag .
For most protocols HMI Editor requires a validation code being held by the PLC, which is queried on each connection. This
password must be stored in your PLC as a 16 bit hexadecimal value (0 to FFFF) and must match the value specified in ‘Valida-
tion Code’ for connections to a PLC to succeed. In most cases this security measure alone is enough for simple applications.

Validation Codes are stored in PLCs in the following Memory Address or Tag depending on protocol.

Validation codes are entered in the relevant field of your HMI Editor’ connector. Note that HMI Editor will always perform this se-
curity check. There is no way to disable or prevent it, however you can set a custom Validation Tag:

PROTOCOL DEFAULT VALIDA-
TION TAG

REMARKS

EIP/Native SMValidationTag Any INT value. This tag must be present in order for HMI Editor to
communicate. Set initially to ‘0’ to avoid having to enter it on HMI Edi-
tor during development stages.

EIP/PCCC N98:0 Any INT value. This tag must be present in order for HMI Editor to
communicate. You may have to create a Data File number 98 of type
Integer with at least 1 element

FINS/TCP
(Omron)

D19998 Any value from 0000 hex to FFFF hex is valid.

Melsec/TCP
(Mitsubishi)

D8085 Any value from 0000 hex to FFFF hex is valid.

Modbus/TCP
Modbus over TCP

(Not Available) See note below.

Opto22/Native SMValidationTag Integer32 Numeric variable that must be configured in the PAC
Control strategy in order to allow HMI Editor to communicate with it.
The valid range for its value is 0-65535 (0xFFFF). Set initially to ‘0’ to
avoid having to enter it on HMI Editor during development stages.

Siemens/ISO_TCP MW998 Any value from 0000 hex to FFFF hex is valid.

The Validation Code feature is not available for Modbus/TCP due to the great number of Industrial devices supporting this
protocol, which makes impractical to establish a general way to implement such feature.

page: / www.ritecontrol.com132 153

http://www.ritecontrol.com

HMI Editor

7.8.7 Setting a Custom Validation Tag
If the default validation tag interferes with your project you can set a custom one with the Validation Tag parameter.
When using a custom Validation Tag you must be aware of the following rules:

• It is explicitly forbidden to use 0 (zero) for the Validation Code when you set a custom Validation Tag. If you do so validation
check will always fail.

• If you explicitly set the Validation Tag property to the same as the default one, you will still have to explicitly set a non zero va-
lue for the validation code, as using 0 will always fail the validation check.

• To return to the Default Validation Tag, and thus remove the restriction on a value of 0 for the Validation Code, simply leave
the Validation Tag field empty.

page: / www.ritecontrol.com133 153

http://www.ritecontrol.com
http://www.macsurfer.com/

HMI Editor

7.8.8 International Languages Support and String Encodings
The HMI Editor app fully supports International Characters and Strings in any language. Integrators can therefore chose to pre-
sent their project interface in any language.
To represent strings the concept of String Encodings is used. String Encodings are international conventions that determine how
characters representing particular languages are stored into files and device memory.
By default HMI Editor assumes project files and Strings to conform to the UTF-8 Encoding. This is specially adequate for En-
glish and relatively compact for most Western European languages such as German, French, Spanish, Portuguese, and many
others. UTF-8 is still designed to work for virtually any international language including Asian languages (Chinese, Japanese,
Korean) and the rest of languages that are not based on Latin derived characters. It does not require any particular setting.
The UTF-8 encoding is backward compatible with old plain ASCII, meaning that ASCII characters share the same codes when
represented in UTF-8 encoding.
International languages can be represented with encodings other than UTF-8 which are generally more efficient for a particular
language. This is presented on the next section.
The default string encoding for String storage in PLCs is WindowsLatin1. Like UTF-8 the WindowsLatin1 encoding is backward
compatible with ASCII, but contrary to UTF-8, it uses one single byte per character for representing most Western European
languages like German, French, Spanish, or Portuguese.

page: / www.ritecontrol.com134 153

http://www.ritecontrol.com

HMI Editor

7.8.8.1 String Encoding for International Languages.
The following explicit string encodings are supported on HMI Editor:

EXPLICIT ENCODING Description

WindowsLatin1 Identifies the ISO Latin 1 encoding (ISO 8859-1). This is the default.

UTF-8 Identifies the Unicode UTF 8 encoding.

UTF-16 Identifies the Unicode UTF 16 encoding.

MacRoman Identifies the Mac Roman encoding. Used on western localizations of Mac OS. Useful when
you use diacritic characters (Spanish, French, German, the degree º simbol...) but you do not
want to export your file as csv-windows.

Cyrillic/Mac Identifies the Mac Cyrillic encoding

Cyrillic/Win Identifies the Windows Code page 1251 Slavic Cyrillic encoding

Cyrillic/ISO Identifies the ISO 8859-5 Cyrillic encoding

Japanese/Mac Identifies the Mac Japanese encoding

Japanese/Win Identifies the Windows Code page 932 Japanese encoding

Japanese/JIS Identifies the Shift-JIS format encoding of JIS X0213

Chinese/Mac Identifies the Mac Simplified Chinese encoding

Chinese/Win Identifies the Windows Simplified Chinese encoding

Chinese/GB2312 Identifies the GB_2312 Chinese encoding

The UTF-8 encoding is a multibyte character encoding derived from UTF-16. Like UTF-16 it can represent every character
of all languages, but unlike UTF-16, it is backward compatible with ASCII, using only one byte for representing ASCII char-
acters.
Only UTF-16 or UTF-8 is supported on project files. Project files with the UTF-16 encoding will be converted automatically to
UTF-8.

page: / www.ritecontrol.com135 153

http://www.ritecontrol.com

HMI Editor

7.8.8.2 Use of International Characters in PLC Strings
You can store international Strings in PLCs with HMI Editor just as easily as you do ASCII strings. HMI Editor will use the string
encoding specified for the Connector to decode/encode strings onto raw bytes in the PLC.
When storing international Strings into PLCs you must expect the number of bytes used, and thus the PLC string length, to be
larger than the number of characters the string actually contains. This is particularly notorious when storing Chinese or Japane-
se strings in PLCs.
The UTF-8 encoding, for instance, can use up to 6 bytes per character in a PLC. However, this does not affect how strings are
allocated in HMI Editor or the behavior of String methods and operators in expressions, since these always refer to actual cha-
racters and actual character lengths regardless of encoding.
Of couse, if you only use English or ASCII characters with an encoding that is backward compatible with ASCII, or you use the
default WindowsLatin1 encoding, only one byte per character will be allocated in your PLC to store strings.

page: / www.ritecontrol.com136 153

http://www.ritecontrol.com

HMI Editor

7.9 PLC Tags
PLC Tags are associated with PLC Connectors through Properties that are dynamically created upon addition of PLC Tags. This
makes possible to access them as any regular Object Property. PLC Tags are accessible as Properties of PLC Connectors
The syntax for accessing a tag named tagName of a PLC Connector named source is the following:

source.tagName

PLC Tags have in turn their own configuration panel. The following parameters are available:

PLC TAG PARAME-
TERS MEANING

write_expression Enter an expression here to write values to PLC Tags The execution of the expression causes
a write to the PLC Tag. See sections below for more information.

Address Memory location or Variable Name in the PLC for this PLC Tag. See sections below for more
information.

Type Native Data Type in the PLC for this PLC Tag. See sections below for more information.

page: / www.ritecontrol.com137 153

http://www.ritecontrol.com

HMI Editor

Raw Min Value
Raw Max Value
Engineering Min Value
Engineering Max Value

These four parameters determine the scaling to be applied upon reading and writing of scalar
numeric types.
Raw Min Value, Raw Max Value represent a pair of numeric values in raw units as present in
the PLC.
Engineering Min Value, Engineering Max Value represent a pair of corresponding values in
engineering units they as will be treated on HMI Editor.
By setting these parameters, raw values are converted (scaled) to engineering values on by
applying a linear transformation on read, and engineering values are converted back to raw
values upon writing.
Example: by setting 0,100,0,1 respectively to these parameters any PLC raw value will be di-
vided by 100 upon read, and multiplied by 100 upon write. Or in other words, 100 units on the
PLC will correspond to 1 unit on HMI Editor.

PLC TAG PARAME-
TERS MEANING

page: / www.ritecontrol.com138 153

http://www.ritecontrol.com

HMI Editor

7.9.1 Specification of Variable Types (‘Type’ Parameter)
Type determine the native data type of variables in PLCs. A Type may refer to a simple scalar value such as an INT or FLOAT or
to an array of values.To indicate that you access a PLC Variable as an array you append [n] to its data type. In the table below,
‘n’ indicates the total number of elements that the array must hold.
The following types are supported.

TYPE REMARKS

BOOL[n] Value that can adopt one of two states.

SINT[n] 8 bits signed integer value (-128 ... +127)

INT[n] 16 bits, signed integer value (-32768 ... +32767)

UINT[n] 16 bits unsigned integer value (0 ... 65535).

UINT_BCD[n] 4 digit BCD value stored in a 16 bit register using 4 bits per digit (0 ... 9999)

DINT[n] 32 bits signed integer value (-2147483648 ... +2147483647)

UDINT[n] 32 bits unsigned integer value (0 ... 4294967295)

UDINT_BCD[n] 8 digit BCD value stored in two 16 bit register using 4 bits per digit (0 ... 99999999)

REAL[n] 32 bits floating point value (IEEE 754) (aprox -1e38 ... +1e38)

CHANNEL[n] Same as UINT

WORD[n] Same as UINT

DWORD[n] Same as UDINT

STRING[n]
STRING(size)[n]

Type containing a characters string. Actual representation depends on protocol, for example Allen
Bradley controllers can hold up to 82 character bytes. Siemens S7 controllers require a size specifi-
cation for strings. Notice that size is given between parentheses, NOT square brackets.
Note that STRING[n] does not indicate a string containing n characters but an array containing n
strings of default capacity. Particularly do not confuse with CHAR(n) or STRING(n) which refers to a
single string with a capacity of n bytes.
By default, Strings on controllers are interpreted as per the WINDOWS-LATIN1 encoding, but other
encodings are possible if specified on the Connections Object.(See International Languages Sup-
port)
The STRING type should be used with the appropriate string memory area or string tag type in con-
trollers supporting them.
The use of the STRING data type is not limited to controllers with explicit support for strings. See
section Representation of Character Strings in PLCs below for further information.

page: / www.ritecontrol.com139 153

http://www.ritecontrol.com

HMI Editor

CHAR(size)[n]
CHAR[size]

Similar to STRING except that it is meant for NULL terminated strings and it does not insert a leading
length word. It can be used on protocols with no specific support for strings such as Modbus. In this
case size indicates the string buffer length, i.e. the number of character bytes that should be allocat-
ed in the PLC for the string, starting from the address specified in the Address Parameter.
Note that CHAR[20] would technically mean an array of 20 character bytes, however in this case it
will be treated as a single string with a capacity of 20 bytes.
Keep in mind that if you use a string encoding other that the default, you must require an increased
size to give more capacity to fit all the characters. This is because on some encodings a single char-
acter may require multiple bytes to be represented.
It is possible to have arrays of char strings. For example CHAR(size)[n] will represent an array of n
strings with a capacity of size bytes each.
See also section Representation of Character Strings in PLCs below

When entering a Type, you can optionally specify an array size for it as shown above in italics. When you do so, the related
PLC Variable is interpreted as an array of values of the relevant type instead of a single value. See PLC Memory Arrays
and Access Types for more information.
Size definition is obligatory for CHAR types.

Reading a PLC Variable provides a value to the Expressions Engine with a Data Type as defined in section "Data Types in
Expressions" that depends on the PLC DataType.
For STRING and CHAR(n) you will get a String, for the scalar types such as BOOL, INT, DINT, FLOAT etc you get a
Number. For PLC Arrays you will get an Array of Strings or an Array of Numbers depending on the base PLC Type.

TYPE REMARKS

page: / www.ritecontrol.com140 153

http://www.ritecontrol.com

HMI Editor

7.9.1.1 Representation of Character Strings in PLCs
Strings in PLCs are stored in several ways depending on PLC brand or family. HMI Editor uses a homogeneous way to indicate
PLC tag Types that in some cases differ slightly from the PLC manufacturer way.
In general, you do not need to worry about which particular representation a particular PLC uses. HMI Pad handles it all auto-
matically for you.
Not all PLCs share the same fields for representing a string. For example Allen Bradley controller strings are fixed capacity and
can hold up to 82 character bytes. Siemens S7 controllers, on the other hand, require a size specification for strings.

For Allen Bradley Controllers you can simply use STRING to indicate a single string, or STRING[n] to indicate an array of n
strings. The actual representation of a single string on the PLC consists on a UINT or UDINT field followed by a 82 bytes long
buffer.

AB MICROLOGIX STRING REPRESENTATION (STRING):

AB LOGIX STRING REPRESENTATION (STRING):

The same criteria apply for Opto22 PAC controllers as they represent STRINGs with a variable length structure starting with a
field containing a value for both size and length followed by the same number of raw characters after the length field.

OPTO22 STRING REPRESENTATION (STRING):

For Siemens S7 Controllers you must use STRING(size) where size is the total number of byte characters that the string can
hold, or STRING(size)[n] to indicate an array of n strings of size character capacity. The actual representation of a
STRING(size) in the PLC consists on the following pattern.

SIEMENS SIMATIC S7 STRING REPRESENTATION (STRING(size)):

Although the above representations are the default ones for the mentioned controller brands, HMI Editor will still attempt to
chose one of the above for use on controllers with no explicit STRING specification. The choice will depend on whether you
used a size specifier.
On controllers with no explicit STRING representation you will want to use the raw char string representation CHAR(n)

RAW CHAR STRING REPRESENTATION (CHAR(size)):

Length (2 bytes) Characters (fixed size, 82 bytes)

Length (4 bytes) Characters (fixed size, 82 bytes)

Size and Length (4 bytes) Characters (variable size)

Size (1 byte) Length (1
byte)

Characters (variable size)

Characters (variable size)

page: / www.ritecontrol.com141 153

http://www.ritecontrol.com

HMI Editor

For raw char string reads, HMI Editor will understand a NULL character or the total buffer size as the termination of the string.
For writes, HMI Editor will pad all unused bytes with NULL characters. This is the usual convention for raw character string rep-
resentations.

page: / www.ritecontrol.com142 153

http://www.ritecontrol.com

HMI Editor

Important note about Strings with Siemens Simatic S7 controllers.
The size field for STRINGS in S7 must be generally specified. This is usually done in Siemens software by appending the size in
square brackets just after 'STRING'. For example STRING[20].However, HMI Editor already uses square brackets to identify ar-
rays so this notation conflicts with S7 notation.
To work around this we chose to use normal parentheses to indicate size.
Thus, STRING sizes must be indicated in the Type parameter using round parentheses. The square notation is still reserved for
arrays, so when you use them you will be referring to ARRAYs. Consider the following cases:
STRING(20) This refers to a STRING with a capacity of 20 characters and should not be confused by STRING[20]
STRING(20)[3] This is an ARRAY of 3 elements, each element is a string with a capacity of 20 characters
STRING[20] This is an ARRAY of 20 STRINGs. This is not a string of 20 characters!. Since the default string size for S7 is 254
(256 bytes including the size and length fields) you will end having an array of 20 STRINGs with a capacity of 254 characters
each. Actually you will end reading (or writing) a range of 20*256 = 5120 bytes on your PLC for this tag and your PLC will most
probably reply with an out of range error.

page: / www.ritecontrol.com143 153

http://www.ritecontrol.com

HMI Editor

7.9.2 Specification of Variable Addresses (‘Address’ Parameter)
A Variable Address represents a memory location, a register or a Tag in a PLC to which a Variable refers. Addresses are speci-
fied in different ways depending on the particular communications protocol.
For protocols based on registers or memory areas, Addresses are specified by a prefix referring to the memory area followed by
a numeric value indicating the position in that area. For Allen Bradley's Logix controllers and Opto 22 PAC controllers Addresses
are based on symbolic names.
The following memory areas and prefixes are supported.

PROTOCOL ADDRESS REMARKS

EIP/Native (AB
Logix Controllers)

<symbolic-name> : Access by name Actual symbolic PLC tag name. See Note on EIP/Na-
tive Communication Protocol below.

EIP/PCCC (AB
Micrologix and
SLC 5)

O0: Outputs
I1: Inputs
S2: Status
B3: Binary
T4: Timer
C5: Counter
R6: Control
Nn: Integer File (n is file number)
Fn: Floating Point File (n is file num-
ber)
STn: String File (n is file number)

Tags are specified by File type, File number and Offset
in the regular way. Individual bits in words can be ac-
cessed to using the usual slash notation for SCL and
Micrologix controllers.
Examples:
B3:5 would access word 5 on file 3 of type ‘B’
N7:0 would access value at position 0 in N7 File.
N7:0/3 would access bit 3 in N7:0

Fins/TCP (Omron) W: Work area
D: Data Memory Area (DM)
T: Tim/Counter Area (T/C)
H: Holding Register Area (HR)
A: System Area (AR) Area
E: Extra Memory (EM) Area
(no prefix) : I/O Area

Individual bits are specified by following a dot (.) and a
number from 0 to 15.
For example: W10.5 refers to bit 5 of W10

Melsec/TCP D: Data Register (word)
R: File Register (word)
TN: Timer Current Value (word)
TS: Timer Contact (bit)
CN: Counter Current Value (word)
CS: Counter Contact (bit)
X: Input (bit)
Y: Output (bit)
M: Internal Relay (bit)
S: State Relay (bit)

Bits or Words are specified by appending the number
address to the device area:
For example:
M4 is bit 4 of M area,
D8 is word 8 of D area

Individual bits on 16 bit device areas can be accessed
by appending a dot (.) and a number from 0 to 15.
For example: D8.5 refers to bit 5 of D8

page: / www.ritecontrol.com144 153

http://www.ritecontrol.com

HMI Editor

Modbus/TCP
Modbus over TCP

I: Input Discrete (read only)
C: Coil
IR: Input Register (read only)
HR: Holding Register

To access Coil number 10, specify C10. To access
Holding register 1 specify HR1.
Individual bits in HRs can be accessed for reading or
writing using a dot notation. For example, HR1.3 would
refer to bit 3 in HR1

Opto22/Native
(Opto22 PAC)

<symbolic-name> : Access by name Actual symbolic PAC control tag name for accessing
Strategy Variables, Timers, Tables, i/O.and Charts.
In some cases suffixes or element specifiers are ap-
plied to identify variable attributes and special func-
tions.
Data type and array index provided in Type are also
relevant for the actual read/write command used to ac-
cess PAC Charts or Timers.
See Note on Opto22/Native Communication Protocol
below and the included example files.

Siemens/ISO_TCP
(Siemens S7)

Area Prefixes:

E: Inputs
I: same as E
A: Outputs
Q: Same as A
M: Internal Flags
DBn.DB: Data block

Valid Size Modifiers (after Area
Prefix):

X: Any size or 1 bit size
B: byte (8 bits)
W: word (16 bits)
D: double word (32 bits)
(none): 1 bit size

Tags are addressed by Area and Size in the usual way
for S7 controllers.
Examples:
E2.3 accesses bit 3 of input address 2
I2.3 same as above (English notation)
MB14 accesses address 14 on the flags area as a 8 bit
value
MW14 accesses address 14 on the flags area as a 16
bits value
MD14 accesses address 14 on the flags area as a 32
bits value
DB2.DBW6 accesses address 6 on Data Block number
2 area as a 16 bits value
DB4.DBX8 accesses address 8 on Data Block number
4 area. Size depends on actual type specified type on
column B

PROTOCOL ADDRESS REMARKS

page: / www.ritecontrol.com145 153

http://www.ritecontrol.com

HMI Editor

Accessing data types longer than one register.
For data types requiring more than one register or memory location, the lower address in their range must be specified. For ex-
ample, a variable of type DINT addressed by HR100 will use HR100 and HR101 because 2 Modbus registers (16 bits) are re-
quired to accommodate the complete variable (32 bits). Integrators must be aware of it to avoid overlapping tag values. This ap-
plies to all protocols except EIP/Native and Opto22/Native.

Accessing a Register as a BOOL.
Generally, it is possible to specify a BOOL type for a register or memory location even if it is not meant to hold a BOOL. You can
for example specify that HR1 is a BOOL. In such case, HMI Editor will apply the usual convention of true non zero values
EIP/Native does not allow a non BOOL PLC Tag to be treated as BOOL due to the strict type checking that this protocol encour-
ages.
Siemens/ISO_TCP enforces size identification along with memory area, thus some restrictions apply for use of BOOL type on
larger sizes.
The Opto22/Native protocol does not add type information to tags so you can use BOOL as Type to display values as per the
general rule.

Accessing individual bits in a Register.
Individual bits on registers can be accessed by using the BOOL type and by specifying a bit address using the dot (.) or slash (/)
notation depending on protocol (see table above). When writing, HMI Editor will use the appropriate protocol command to avoid
overwriting undesired bits on the register.
On EIP/Native you can still use the dot notation to access individual bits on variables, but due to strict type checking you must
set the correct variable Type.
With the Opto22/Native protocol the general rule still works for reads and therefore you can use the dot and bit number notation
to obtain the corresponding bit value, for example ‘myIntTag.3’ will return the value of bit 3.

Note on EIP/Native communications protocol (AB Logix controllers).
EIP/Native communications do not rely on particular memory locations or positions, but on symbolic names. With this protocol
the user is relieved from the responsibility to assign memory addresses or registers and from the need to take tag sizes into ac-
count for storage. Additionally, EIP/Native tags carry data information such as type and size, which HMI Editor uses to check
against type mismatches on PLC returned values. As a result, it is not possible to store values that differ in type or size from the
values that are uniquely defined in the PLC. Any attempt to so so will result in a ‘type mismatch’ error on the offending tag.
For EIP/Native any valid reference to an existing scalar or array type tag including structure members or array elements is sup-
ported. For example “myStructData[2,3].intMember” may refer to an integer value referenced by the intMember member of ele-
ment (2,3) of an array of structures.
As a general rule, any Tag name path referring to an existing scalar value (BOOL, SINT, INT, DINT, REAL, STRING) or array of
such elements in a Logix Controller can be accessed.
To access arrays as a whole you need to set the array size on Type, as discussed on the previous and following sections.
You can also access program tags by using the following syntax
Program:<program_name>.<tag_name>

Note that ‘Program’ is literal. <program_name> and <tag_name> identify just what they suggest.
Note also that HMI Editor performs a Validation Code security check before any other attempt to access other tags is made,
therefore, it is mandatory to have a tag named “SMValidationCode” of type INT in your PLC for communications to work. (see
The Default Validation Tag)

page: / www.ritecontrol.com146 153

http://www.ritecontrol.com

HMI Editor

Note on Opto22/Native communications protocol (Opto22 PAC).
The Opto22/Native is a symbolic communications protocol that uses PAC control symbolic tag names to access variables in
Opto22 PAC controllers. Integer, Float and String data types and Tables are fully supported for read and write. Additionally, HMI
Editor provides ways to perform particular operations on timers and chars and to access fields of digital and analog I/O points.
The way you use HMI Editor for accessing to these features is described in continuation.
DataTypes: Supported types for Opto22 are DINT, REAL and STRING (Type Parameter). Other data types in HMI Editor can be
used as well but they may trim results depending on the actual values in the controller.
Tables: Tables are fully supported. Tables can be of DINTs, REALs or STRINGs. To access tables you define the number of el-
ements to read or write from a table as an array subscript on Type. For example REAL[8] will refer to 8 elements of a table of
floats. Similarly, on Address you specify the starting element, for example myRealTable[3]. These two entries combined will cause
reads or writes of 8 values from the table myRealTable starting at element 3 and continuing through element 10 inclusive.
DIgital and Analog I/O Points: I/O points in Opto22 are represented by data structures which HMI Editor can read and provide
access to some of its members. In order to access I/O point structure members a dot notation using particular names is used.
The following member access names are available:
digital_IO_point.state read access to a BOOL value corresponding to the actual state of any Digital I/O point
digital_I_point.on_latch read access to a BOOL with the On Latch attribute of a Digital Input point
digital_I_point.off_latch read access to a BOOL with the Off Latch attribute of a Digital Input point
digital_I_point.counter read access to a DINT value with the Counter value of a Digital Input point
analog_IO_point.value read access to a REAL with the actual value of any Analog I/O point
analog_I_point.min read access to a REAL with the min value of an Analog Input point
analog_I_point.max read access to a REAL with the min value of an Analog Input point
IO_Point.enabled read access to an an 8 bit value register associated with an I/O point to check if its I/O Unit and

I/O Point Communication flags are enabled.
Note that these member access names are not available on the expressions engine but only as an extension for point variable
definitions as entered in Address. In other words, a point variable data structure cannot be read as a single object but only
through its members.
Timers:. Timer values are accessed as any regular float variable. Additionally, some actions can be performed on timers when
operated in write mode. In such case particular commands are sent to the PAC controller as opposed to a data value. To cause
commands for appropriate actions to be sent you must set the write_expression parameter on the PLC Tag. Actions are speci-
fied using the dot notation with particular names as follows:
timer Actual value, a REAL with the value of the Timer variable timer.
timer.start_timer when written to sends the command StartTimer to the Timer timer
timer.stop_timer when written to sends the command StopTimer to the Timer timer
timer.pause_timer when written to sends the command PauseTimer to the Timer timer
timer.continue_timer when written to sends the command ContinueTimer to the Timer timer
Charts:. It is possible to read Chart Status and to perform Start and Stop operations. This is provided by means of structure
member access names. The Start and Stop commands work with writable tags. The same recommendations given for Timer
commands apply for Chart commands.
chart.chart_status provides read access to the 32 bit BitStat value of Chart chart as a UDINT value
chart.start_chart when written to sends a Start command to the Chart chart
chart.stop_chart when written to sends a Stop command to the Chart chart

page: / www.ritecontrol.com147 153

http://www.ritecontrol.com

HMI Editor

7.9.3 PLC Memory Arrays and Access Patterns
It is possible to read or write consecutive memory locations in the PLC as memory arrays and use them as single property val-
ues. In order to do so you define the array size for the PLC Tag Type. HMI Editor will read the specified number of values and
will make them available as an Array through the Property associated to the PLC Tag.
To deal with PLC arrays HMI Editor uses several access patterns depending on the specified Type and actual size of data in
the PLC. We will use examples based on the modbus protocol to discuss each possible case. The same patters will work on all
protocols for similar types and data sizes. For the examples we assume PLC Tags belong to a Connector named source.
The following access patterns are possible:

1 - Accessing 1 bit data size memory areas as single values (modbus coils).
• BOOL, SINT, INT, DINT, in Type
• Cx in Address
The tag property gets the value of Cx (0 or 1) regardless of Type
Example: get value at C1 as INT
testTag INT C1
source.testTag will contain 0 or 1 depending on the value in C1.

2 - Accessing 1 bit data size memory areas as an array (modbus coils)
• BOOL[n], SINT[n], INT[n], DINT[n] in Type
• Cx in Address
The tag property will be an array containing n elements of the specified type. Bits in each element will be taken from the PLC
memory from the less significative to the most significative.
Example: get array of 2 INTs starting at C1
testTag INT[2] C1
Array element 0 (source. testTag[0]) will contain bits from C1 to C16.
Array element 1 (source. testTag[1]) will contain bits from C17 to C32.
Example: array of 10 BOOLs starting at C1
testTag BOOL[10] C1
Array element 0 (source.testTag[0]) will contain C1
Array element 1 (source.testTag[1]) will contain C2 ...
Array element 9 (source.testTag[9]) will contain C10

3 - Accessing regular PLC memory as single values (valid on all protocols).
• BOOL, SINT, INT, DINT, REAL, STRING, CHAR[n] in Type
• HRx in Address
The tag property gets the value of HRx taking either the full register or the necessary following registers to hold the complete
value. For types that are shorter than the actual register size the value in the PLC register is taken as a whole rather than
trimmed to a shorter type.
Example: get DINT at HR1
testTag DINT HR1
source.testTag will contain the DINT value contained in HR1,HR2. (this is because DINT is 32 bits long and HRs hold 16 bits
each)

Example: get HR1 as a BOOL
testTag BOOL HR1
source.testTag will contain 1 (true) if HR1 is not zero, or 0 (false) otherwise. HR1 raw value is therefore interpreted as boolean. 

page: / www.ritecontrol.com148 153

http://www.ritecontrol.com

HMI Editor

4 - Accessing regular PLC memory as an array of values (valid on all protocols).
• SINT[n], INT[n], DINT[n], REAL[n], STRING[n] in Type
• HRx in Address
The tag property will be an array containing n elements of the specified type. The array gets its values starting from HRx taking
the necessary following registers to complete all its data according to data type size. Data is packed as it is found in PLC memo-
ry for types that are shorter than the actual PLC register size and taking into account the native endianness of the protocol.
Example 1: get array of 2 REALs starting at HR1
testTag REAL[2] HR1
Array element 0 (source.testTag[0]) will contain the REAL value at HR1,HR2.
Array element 1 (source.testTag[1]) will contain the REAL value at HR3,HR4.

Example 2: get array of 4 SINTs starting at HR1
testSTag SINT[4] HR1
Array element 0 (source.testSTag[0]) will contain the first byte of HR1.
Array element 1 (source.testSTag[1]) will contain the second byte or HR1
Array element 2 (source.testSTag[2]) will contain the first byte of HR2
Array element 3 (source.testSTag[3]) will contain the second byte of HR2

5 - Accessing individual bits of regular PLC memory (valid on all protocols).
• BOOL, SINT, INT, DINT, REAL in Type
• HRx.y in Address
The tag property gets the value of bit y (0 or 1) of HRx regardless of its type
For writes, using this pattern guarantees that writes of individual bits on registers will not affect or overlap other bits in the same
or other registers.
Example: get HR1.0 as DINT
testTag DINT HR1.0
source.testTag will contain 0 or 1 depending on the value in HR1.0

6 - Accessing individual bits of PLC memory as an array of boolean values (valid on all protocols).
• BOOL[n], in Type
• HRx in Address
The tag property will be an array containing n elements of type BOOL. The array gets its values starting from Bit zero of HRx
taking the necessary following registers to complete all its data.
Note that writing BOOL arrays with a size that is not a multiple of the raw register size on PLC memory will cause the exceeding
bits to be set to zero.
Example: array of 32 BOOL starting at HR1
testTag BOOL[32] HR1
Array element 0 (source.testTag[0]) will contain bit 0 of HR1
Array element 1 (source.testTag[1]) will contain bit 1 of HR1.
...
Array element 16 (source.testTag[16]) will contain bit 0 of HR2
...
Array element 31 (source.testTag[31]) will contain bit 15 of HR2

page: / www.ritecontrol.com149 153

http://www.ritecontrol.com

HMI Editor

Note on EIP/Native communication protocol (AB Logix controllers).
Since EIP/Native communications rely on symbolic names and type checking is performed on returned data, type matching
must be observed. Basically, most of the above patters are applicable in the general way as far as the data type specified in col-
umn B matches the actual type on the PLC tag. This includes strings and arrays of any type.
From your perspective as integrator you do not need to treat Logix BOOL arrays in a special way as HMI Editor handles them
automatically for you, in essence you can access individual elements by just entering BOOL on Type and the particular array
element on Address (pattern 3), or you can get the complete (or part of the) array by specifying BOOL[n] on Type (pattern 6)

Note on Opto22/Native communication protocol (Opto22 PAC controllers).
The Opto22/Native protocol is symbolic but it does not always carry type information. Therefore, all the above accessing patters
(except 1 and 2) are applicable and will work as described in most cases, specially for Integer and Float data values. The avail-
ability of access patters allows for advanced ways to get partial information from Opto22 strategy variables
Pattern 4 is especially relevant to be considered when used with Integer or Float Tables as it will prioritize the specified element
size (for example 2 bytes for INT[n]) as opposed to the actual table element size (always 4 for Opto) and will still produce the ef-
fects described for that pattern (so when reading integer elements from OPTO into INT arrays, each OPTO table element will
consume 2 HMI Editor array-elements).
Of course, if you always use DINT[n] or REAL[n] for accessing tables (strongly recommended), each table element will correctly
fit in one element both in the Opto22 PAC controller and HMI Editor.

page: / www.ritecontrol.com150 153

http://www.ritecontrol.com

HMI Editor

7.9.4 Writing to PLC Variables ('write_expression' Parameter)
You can configure writes to PLC Variables by entering an expression into the write_expression. The write_expression property is
designed to perform writes on the PLC as the expression changes (receives a change event).

Example 1
For example if you enter button1.value on the write_expression property of a BOOL Tag, HMI Editor will send the button action (1
or 0) to the PLC when an user taps on the button.

Example 2
Consider that we have a switch on screen we want to link both ways with a PLC Tag named source.myTag. We want the switch
to track changes of source.myTag and we want source.myTag to update when the switch changes.
Therefore we need to connect both sides of the required actions through expressions as schematized below:

1:- On the value property of the switch we enter: source.myTag. (This will update the switch when source.myTag changes)
2:- On the write_expression of the myTag we enter: switch.value (This will update source.myTag when the switch changes)
It is worth observing that you can enter whatever expression on each side of the link. This allows for achieving complex things
such as updating interface elements that depend on several PLC values (or other interface elements) and perform writes to PLC
tags that depend (or are linked) to disparate elements on the interface.

Use of the Expression List Operator (comma operator) to differentiate writes
The Expression List Operator ',' (comma operator) can be used to easily configure writes that should trigger on separate condi-
tions without affecting each other.
For example we may have a numberField and a knob control on the interface and we want to update a PLC Tag for changes on
any of the two. In this case you can enter the following on the write_expression property of said PLC Tag :

numberField.value, knob.value

this will write a value to the PLC Tag when either numberField.value changes or knob.value changes. Of course to keep both
controls updated on the opposite direction you need to enter source.tag in the value fields of both controls..

write_expression =

switch source.myTag

source.myTagvalue = switch.value

ReadWrite

page: / www.ritecontrol.com151 153

http://www.ritecontrol.com

HMI Editor

Document Revision History
Refer to this section to look at changes on this document over different versions.
Version 2.2.1
• Description for rand function
• Updated description for $UsersManager

Version 2.2
• Added description for $System.pulseOnce property
• New section covering the $Scanner object
• Update of the image object properties for inclusion of the animationDuration property, animated sequencing of images, and

mention of 'gif' file support.
• New section describing the $UsersManager object.
• New section describing the 'User' object.
• Description of new system methods, SM.allFonts, SM.allColors, SM.encrypt, SM.decrypt, SM.mktime.
• New sections for describing Data Loggers and Data Presenters.
• Added the element property and replaced value by index properties on the Array Picker object
• Description of new Recipe Sheet object
• Description of new Data Snap object
• Description of $Project.allowedOrientationPhone property
• Added note on the ab-use of the 'if-then-else' clause

Version 2.1
• Additional methods for Numbers (floor, cel), Arrays (min, max) and Ranges (begin, end)
• Deprecation note for the Math.floor() and Math.ceil() methods

Version 2.0
• Description of available options on the Editing Tools menu.
• Added the enabledInterfaceIdiom property to Page
• Added LinkToPage and LinkToPages properties to Button, Slider Control and Array Picker
• Description of $System.interfaceIdiom property
• Description of $Project.allowedOrientation property

Version 1.2
• Description for the group object.
• Updated page object with new properties.
• Updated alarm object with new properties related to sound and alerts.
• Added the Register Grouping Limit parameter to the modbus protocol parameters.

Version 1.0
• Initial Release.

page: / www.ritecontrol.com152 153

http://www.ritecontrol.com

HMI Editor

Rite Control Contact Information

SweetWilliam, S.L.
Science and Technology Park of the University of Girona,
Emili Grahit, 91
(Narcís Monturiol building, P3-B03 office)
17003 - Girona- Spain
Tel: +34 972 18 32 44
e-mail: support@sweetwilliamsl.com
Web: http://www.ritecontrol.com

page: / www.ritecontrol.com153 153

mailto:support@sweetwilliamsl.com
http://www.sweetwilliamsl.com
http://www.ritecontrol.com

	1 The HMI Pad System Components
	2 The HMI Editor app main user Interface
	2.1 The Application Panel
	2.2 The Project Viewer

	3 Creating and opening Projects
	4 Editing Projects in the Project Viewer
	4.1 Editing Projects in a Text Editor

	5 Objects, Properties and the Project Object Model
	5.1 The Model Browser and Main Object Types
	5.2 Object Properties
	5.2.1 Property Kinds
	5.2.1 Property Data Types

	6 Expressions
	6.1 Data Types in Expressions
	6.2 Supported Operators and Operator precedence
	6.3 Functions, Methods and more about Operators
	6.3.1 Numeric Operators and Methods
	6.3.2 String Operators and Methods
	6.3.3 Array Operators and Methods
	6.3.4 Dictionary Operators and Methods
	6.3.5 Absolute Time Operators and Methods
	6.3.6 Range Operators and Methods
	6.3.7 Rect, Point and Size Methods
	6.3.8 MATH Methods
	6.3.9 Built-in Functions
	6.3.10 System Methods

	6.4 Format specifiers for ‘format’ and ‘to_s’
	6.5 The ternary conditional operator
	6.6 The ‘if-then-else’ clause
	6.7 The Expression List Operator
	6.8 Putting it all together. Advanced Expressions Examples

	7 Object Properties Reference
	7.1 System Objects
	7.1.1 $Project
	7.1.2 $System
	7.1.3 $Location
	7.1.4 $Motion
	7.1.5 $Player
	7.1.6 $Scanner
	7.1.7 $UsersManager

	7.2 Page Object
	7.3 Interface Objects
	7.3.2 Controls
	7.3.2.1 Input Fields
	7.3.2.1.1 Text Field
	7.3.2.1.2 Numeric Field
	7.3.2.2 Button
	7.3.2.3 Switch
	7.3.2.3.1 Styled Switch
	7.3.2.3.2 Custom Switch
	7.3.2.4 Segmented Control
	7.3.2.5 Slider
	7.3.2.6 Knob Control
	7.3.2.7 Array Picker
	7.3.2.8 Dictionary Picker
	7.3.2.9 Tap Gesture Recognizer
	7.3.3 Indicators
	7.3.3.1 Label
	7.3.3.2 Bar Level
	7.3.3.3 Range Indicator
	7.3.3.4 Data Presenter
	7.3.3.4.1 Trend
	7.3.3.5 Chart
	7.3.3.6 Scale
	7.3.3.7 Gauge
	7.3.3.8 Lamp
	7.3.3.9 Horizontal Pipe
	7.3.3.10 Vertical Pipe
	7.3.3.11 Group
	7.3.4 Image Objects
	7.3.4.1 Image
	7.3.4.2 Frame Shape
	7.3.5 Web Objects
	7.3.5.1 Web Browser

	7.4 Background Objects
	7.4.1 Expression Object
	7.4.2 Recipe Sheet Object
	7.4.3 Data Snap Object
	7.4.4 On Timer

	7.5 Alarm Objects
	7.5.1 Alarm

	7.6 Users
	7.6.1 User

	7.7 Historical data and Data Logger objects
	7.7.1 Data Logger

	7.8 Connector Objects
	7.8.1 Supported PLC Connector Types
	7.8.2 PLC Connector Parameters
	7.8.3 Network Settings for local access.
	7.8.3.1 PLC Settings for local access.
	7.8.4 Network Settings for remote access.
	7.8.5 Network Security.
	7.8.6 The Default Validation Tag .
	7.8.7 Setting a Custom Validation Tag
	7.8.8 International Languages Support and String Encodings
	7.8.8.1 String Encoding for International Languages.
	7.8.8.2 Use of International Characters in PLC Strings

	7.9 PLC Tags
	7.9.1 Specification of Variable Types (‘Type’ Parameter)
	7.9.1.1 Representation of Character Strings in PLCs
	7.9.2 Specification of Variable Addresses (‘Address’ Parameter)
	7.9.3 PLC Memory Arrays and Access Patterns
	7.9.4 Writing to PLC Variables ('write_expression' Parameter)

	Document Revision History

